These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8271907)

  • 1. Spectral localization of arbitrarily shaped regions of interest (SLASH) using single voxel signals.
    Wang Z; Reddy R; Haselgrove JC; Chen CY; Goelman G; Zimmerman RA; Leigh JS
    Magn Reson Imaging; 1993; 11(8):1203-8. PubMed ID: 8271907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLIM: spectral localization by imaging.
    Hu X; Levin DN; Lauterbur PC; Spraggins T
    Magn Reson Med; 1988 Nov; 8(3):314-22. PubMed ID: 3205158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.
    Snyder J; Haas M; Dragonu I; Hennig J; Zaitsev M
    NMR Biomed; 2012 Aug; 25(8):1000-6. PubMed ID: 22290622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACE: a single-shot method for water-suppressed localization and editing of spectra, images, and spectroscopic images.
    van Vaals JJ; Bergman AH; den Boef JH; van den Boogert HJ; van Gerwen PH
    Magn Reson Med; 1991 May; 19(1):136-60. PubMed ID: 2046528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-echo-time magnetic resonance spectroscopy of single voxel with arbitrary shape in the living human brain using segmented two-dimensional selective radiofrequency excitations based on a blipped-planar trajectory.
    Weber-Fahr W; Busch MG; Finsterbusch J
    Magn Reson Imaging; 2009 Jun; 27(5):664-71. PubMed ID: 19108976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective excitation of two-dimensional arbitrarily shaped voxels with parallel excitation in spectroscopy.
    Snyder J; Haas M; Hennig J; Zaitsev M
    Magn Reson Med; 2012 Feb; 67(2):300-9. PubMed ID: 21721040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility magnetic resonance imaging using spectral decomposition.
    Ro YM; Cho ZH
    Magn Reson Med; 1995 Apr; 33(4):521-8. PubMed ID: 7776883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond k-space: spectral localization using higher order gradients.
    Pohmann R; Rommel E; von Kienlin M
    J Magn Reson; 1999 Dec; 141(2):197-206. PubMed ID: 10579943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous two-voxel localized (1)H-observed (13)C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions.
    Doan BT; Autret G; Mispelter J; Méric P; Même W; Montécot-Dubourg C; Corrèze JL; Szeremeta F; Gillet B; Beloeil JC
    J Magn Reson; 2009 May; 198(1):94-104. PubMed ID: 19289293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-guided spatial localization of heterogeneous compartments for magnetic resonance.
    An L; Shen J
    Med Phys; 2015 Sep; 42(9):5278-86. PubMed ID: 26328977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging based magnetic resonance spectroscopy (MRS) localization for quantitative neurochemical analysis and cerebral metabolism studies.
    Lee P; Adany P; Choi IY
    Anal Biochem; 2017 Jul; 529():40-47. PubMed ID: 28082217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison.
    Young R; Serrai H
    Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a fused phantom for quantitative evaluation of brain metabolites and enhanced quality assurance testing for magnetic resonance imaging and spectroscopy.
    Song KH; Kim SY; Lee DW; Jung JY; Lee JH; Baek HM; Choe BY
    J Neurosci Methods; 2015 Nov; 255():75-84. PubMed ID: 26277420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral localization by imaging using multielement receiver coils.
    An L; Warach S; Shen J
    Magn Reson Med; 2011 Jul; 66(1):1-10. PubMed ID: 21287595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized one-dimensional single voxel magnetic resonance spectroscopy without J coupling modulations.
    Lin Y; Lin L; Wei Z; Zhong J; Chen Z
    Magn Reson Med; 2016 Dec; 76(6):1661-1667. PubMed ID: 26667321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hadamard-encoding combined with two-dimensional-selective radiofrequency excitations for flexible and efficient acquisitions of multiple voxels in MR spectroscopy.
    Busch MG; Finsterbusch J
    J Magn Reson Imaging; 2012 Apr; 35(4):976-83. PubMed ID: 22180189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-voxel and multi-voxel spectroscopy yield comparable results in the normal juvenile canine brain when using 3 Tesla magnetic resonance imaging.
    Lee AM; Beasley MJ; Barrett ED; James JR; Gambino JM
    Vet Radiol Ultrasound; 2018 Sep; 59(5):577-586. PubMed ID: 29886575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous localized 1H STEAM/31P ISIS spectroscopy in vivo.
    van Sluis R; Yongbi NM; Payne GS; Leach MO
    Magn Reson Med; 1996 Apr; 35(4):465-70. PubMed ID: 8992195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute quantitation of short TE brain 1H-MR spectra and spectroscopic imaging data.
    Alger JR; Symko SC; Bizzi A; Posse S; DesPres DJ; Armstrong MR
    J Comput Assist Tomogr; 1993; 17(2):191-9. PubMed ID: 8454744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated 3D display of brain surface anatomy and MR spectral data.
    Cao Y; Levin DN; Gregory CD; Raidy T; So GJ; Pelizzari CA
    Magn Reson Imaging; 1993; 11(7):1043-9. PubMed ID: 8231669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.