These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8271973)

  • 1. The structure of the chloramphenicol resistance gene on a transferable R plasmid from the fish pathogen, Pasteurella piscicida.
    Kim E; Aoki T
    Microbiol Immunol; 1993; 37(9):705-12. PubMed ID: 8271973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and nucleotide sequence analysis of the chloramphenicol resistance gene on conjugative R plasmids from the fish pathogen Photobacterium damselae subsp. piscicida.
    Morii H; Hayashi N; Uramoto K
    Dis Aquat Organ; 2003 Feb; 53(2):107-13. PubMed ID: 12650243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida.
    Kim E; Aoki T
    Microbiol Immunol; 1996; 40(9):665-9. PubMed ID: 8908612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transposon-like structure of IS26-tetracycline, and kanamycin resistance determinant derived from transferable R plasmid of fish pathogen, Pasteurella piscicida.
    Kim EH; Aoki T
    Microbiol Immunol; 1994; 38(1):31-8. PubMed ID: 8052160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfonamide resistance gene in a transferable R plasmid of Pasteurella piscicida.
    Kim EH; Aoki T
    Microbiol Immunol; 1996; 40(5):397-9. PubMed ID: 8805105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from Vibrio anguillarum.
    Zhao J; Aoki T
    Microbiol Immunol; 1992; 36(7):695-705. PubMed ID: 1406372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction.
    Wang Y; Taylor DE
    Gene; 1990 Sep; 94(1):23-8. PubMed ID: 2227449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of the chloramphenicol resistance determinant of the streptococcal plasmid pIP501.
    Trieu-Cuot P; de Cespedes G; Horaud T
    Plasmid; 1992 Nov; 28(3):272-6. PubMed ID: 1461942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug resistance and broad geographical distribution of identical R plasmids of Pasteurella piscicida isolated from cultured yellowtail in Japan.
    Kim EH; Aoki T
    Microbiol Immunol; 1993; 37(2):103-9. PubMed ID: 8502175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat.
    Parent R; Roy PH
    J Bacteriol; 1992 May; 174(9):2891-7. PubMed ID: 1314803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4.
    Lin CF; Fung ZF; Wu CL; Chung TC
    Plasmid; 1996 Sep; 36(2):116-24. PubMed ID: 8954883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance.
    Horinouchi S; Weisblum B
    J Bacteriol; 1982 May; 150(2):815-25. PubMed ID: 6950931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and molecular characterization of the ROB-1 beta-lactamase gene from Pasteurella haemolytica.
    Livrelli V; Peduzzi J; Joly B
    Antimicrob Agents Chemother; 1991 Feb; 35(2):242-51. PubMed ID: 2024956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and sequence analysis of a plasmid-encoded chloramphenicol acetyltransferase gene from Staphylococcus intermedius.
    Schwarz S; Spies U; Cardoso M
    J Gen Microbiol; 1991 Apr; 137(4):977-81. PubMed ID: 1713259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens.
    Tauch A; Krieft S; Kalinowski J; PĆ¼hler A
    Mol Gen Genet; 2000 Feb; 263(1):1-11. PubMed ID: 10732668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization analysis of three chloramphenicol resistance determinants from Clostridium perfringens and Clostridium difficile.
    Rood JI; Jefferson S; Bannam TL; Wilkie JM; Mullany P; Wren BW
    Antimicrob Agents Chemother; 1989 Sep; 33(9):1569-74. PubMed ID: 2554801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product.
    Tennigkeit J; Matzura H
    Gene; 1991 Feb; 98(1):113-6. PubMed ID: 2013403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri.
    Schwarz S; Werckenthin C; Kehrenberg C
    Antimicrob Agents Chemother; 2000 Sep; 44(9):2530-3. PubMed ID: 10952608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging chloramphenicol resistance in Staphylococcus lentus from mink following chloramphenicol treatment: characterisation of the resistance genes.
    Schwarz S
    Vet Microbiol; 1994 Jul; 41(1-2):51-61. PubMed ID: 7801525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloramphenicol resistance in Staphylococcus intermedius from a single veterinary centre: evidence for plasmid and chromosomal location of the resistance genes.
    Schwarz S; Werckenthin C; Pinter L; Kent LE; Noble WC
    Vet Microbiol; 1995 Feb; 43(2-3):151-9. PubMed ID: 7740754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.