These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8272189)

  • 41. Epinastine, a highly specific antagonist of insect neuronal octopamine receptors.
    Roeder T; Degen J; Gewecke M
    Eur J Pharmacol; 1998 May; 349(2-3):171-7. PubMed ID: 9671095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunolocalization of a tachykinin-receptor-like protein in the central nervous system of Locusta migratoria migratorioides and neobellieria bullata.
    Veelaert D; Oonk HB; Vanden Eynde G; Torfs H; Meloen RH; Schoofs L; Parmentier M; De Loof A; Vanden Broeck J
    J Comp Neurol; 1999 May; 407(3):415-26. PubMed ID: 10320221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Axonal regeneration of proctolinergic neurons in the central nervous system of the locust.
    Pätschke A; Bicker G; Stern M
    Brain Res Dev Brain Res; 2004 May; 150(1):73-6. PubMed ID: 15126040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Locustatachykinin isoforms in the locust: distribution and quantification in the central nervous system and action on the oviduct muscle.
    Kwok R; Nässel DR; Lange AB; Orchard I
    Peptides; 1999; 20(6):687-94. PubMed ID: 10477124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system.
    Barker DL; Kushner PD; Hooper NK
    Brain Res; 1979 Jan; 161(1):99-113. PubMed ID: 365295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of representative genes of the central nervous system of the locust, Locusta migratoria manilensis by deep sequencing.
    Zhang Z; Peng ZY; Yi K; Cheng Y; Xia Y
    J Insect Sci; 2012; 12():86. PubMed ID: 23421689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Biogenic amines and cyclic AMP in Locusta migratoria: study of octopamine receptors].
    David JC; Fuzeau-Braesch S
    C R Seances Acad Sci D; 1979 Apr; 288(15):1207-10. PubMed ID: 223775
    [No Abstract]   [Full Text] [Related]  

  • 48. Development of histamine-immunoreactivity in the Central nervous system of the two locust species Schistocerca gregaria and Locusta migratoria.
    Pätschke A; Bicker G
    Microsc Res Tech; 2011 Oct; 74(10):946-56. PubMed ID: 21484940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae.
    Selcho M; Pauls D; Huser A; Stocker RF; Thum AS
    J Comp Neurol; 2014 Oct; 522(15):3485-500. PubMed ID: 24752702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colocalisation of taurine- with transmitter-immunoreactivities in the nervous system of the migratory locust.
    Stevenson PA
    J Comp Neurol; 1999 Feb; 404(1):86-96. PubMed ID: 9886027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tyramine synthesis, vesicular packaging, and the SNARE complex function coordinately in astrocytes to regulate Drosophila alcohol sedation.
    Lee KM; Talikoti A; Shelton K; Grotewiel M
    Addict Biol; 2021 Jul; 26(4):e13019. PubMed ID: 33538092
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-affinity antagonists of the locust neuronal octopamine receptor.
    Roeder T
    Eur J Pharmacol; 1990 Nov; 191(2):221-4. PubMed ID: 2086239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NPY-like peptides occur in the nervous system and midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata.
    Schoofs L; Danger JM; Jegou S; Pelletier G; Huybrechts R; Vaudry H; De Loof A
    Peptides; 1988; 9(5):1027-36. PubMed ID: 3244556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster.
    Monastirioti M
    Dev Biol; 2003 Dec; 264(1):38-49. PubMed ID: 14623230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3,4-Dihydroxyphenylalanine (dopa) decarboxylase activity in the arthropod nervous system.
    Murdock LL; Wirtz RA; Köhler G
    Biochem J; 1973 Apr; 132(4):681-8. PubMed ID: 4721604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS.
    Spong KE; Robertson RM
    J Insect Physiol; 2013 Oct; 59(10):1031-40. PubMed ID: 23916994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation, identification, and synthesis of AKH-I4-10 from Locusta migratoria.
    Schoofs L; Holman GM; Proost P; Van Damme J; Neven H; Oudejans RC; De Loof A
    Gen Comp Endocrinol; 1993 Jun; 90(3):364-71. PubMed ID: 8224763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid cold hardening delays the onset of anoxia-induced coma via an octopaminergic pathway in Locusta migratoria.
    Srithiphaphirom P; Robertson RM
    J Insect Physiol; 2022; 137():104360. PubMed ID: 35041846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Octopamine: selective association with specific neurons in the lobster nervous system.
    Wallace BG; Talamo BR; Evans PD; Kravitz EA
    Brain Res; 1974 Jul; 74(2):349-55. PubMed ID: 4151841
    [No Abstract]   [Full Text] [Related]  

  • 60. Linking physiological processes and feeding behaviors by octopamine.
    Selcho M; Pauls D
    Curr Opin Insect Sci; 2019 Dec; 36():125-130. PubMed ID: 31606580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.