BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8272379)

  • 1. Spike generating smooth muscle cells in mesenteric artery of rats.
    Yamaguchi H; Jensen PE
    Pflugers Arch; 1993 Oct; 425(1-2):187-9. PubMed ID: 8272379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 3,4-dihydro-8-(2-hydroxy-3-isopropylaminopropoxy)-3-nitroxy-2H-1-benzopyran (K-351) on smooth muscle cells and neuromuscular transmission in the canine mesenteric artery.
    Kou K; Kuriyama H; Suzuki H
    Br J Pharmacol; 1982 Dec; 77(4):679-89. PubMed ID: 6129911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of neurotransmission with nerve trunk and transmural field stimulation in guinea-pig mesenteric artery.
    Keef KD; Hottenstein OD; Meehan AG; Anthony TL; Kreulen DL
    J Physiol; 1991 Sep; 441():367-83. PubMed ID: 1667797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple actions of cocaine on neuromuscular transmission and smooth muscle cells of the guinea-pig mesenteric artery.
    Kuriyama H; Suyama A
    J Physiol; 1983 Apr; 337():631-54. PubMed ID: 6308237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of extrajunctional receptors in the response of guinea-pig mesenteric and rat tail arteries to adrenergic nerves.
    Itoh T; Kitamura K; Kuriyama H
    J Physiol; 1983 Dec; 345():409-22. PubMed ID: 6141288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries.
    Wu CC; Chen SJ; Garland CJ
    Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties and morphology of single vascular smooth muscle cells in culture.
    Toro L; González-Robles A; Stefani E
    Am J Physiol; 1986 Nov; 251(5 Pt 1):C763-73. PubMed ID: 2430464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels.
    Jensen LJ; Salomonsson M; Jensen BL; Holstein-Rathlou NH
    Br J Pharmacol; 2004 Jun; 142(4):709-18. PubMed ID: 15172957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of effects of connexin-mimetic peptides in rat mesenteric small arteries.
    Matchkov VV; Rahman A; Bakker LM; Griffith TM; Nilsson H; Aalkjaer C
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H357-67. PubMed ID: 16428342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical field stimulation of rat mesenteric small arteries: force and free cytosolic calcium during neurogenic contractions and mechanisms of non-neurogenic relaxations.
    Jensen PE
    Acta Physiol Scand; 1995 Mar; 153(3):289-300. PubMed ID: 7625182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sympathetic control of arterial membrane potential by ATP-sensitive K(+)-channels.
    Goto K; Fujii K; Abe I; Fujishima M
    Hypertension; 2000 Jan; 35(1 Pt 2):379-84. PubMed ID: 10642328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP released from perivascular nerves hyperpolarizes smooth muscle cells by releasing an endothelium-derived factor in hamster mesenteric arteries.
    Thapaliya S; Matsuyama H; Takewaki T
    J Physiol; 1999 Nov; 521 Pt 1(Pt 1):191-9. PubMed ID: 10562344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of amiloride on the neurally mediated contraction of rat mesenteric artery.
    Shimamura K; Zou LB; Moriyama K; Yamamoto K; Sekiguchi F; Sunano S
    Eur J Pharmacol; 1997 Feb; 320(1):37-42. PubMed ID: 9049600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries.
    Lamont C; Vainorius E; Wier WG
    J Physiol; 2003 Jun; 549(Pt 3):801-8. PubMed ID: 12740429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of acute phenolic denervation to show the neuronal dependence of Ca2+-induced relaxation of isolated arteries.
    Wang Y; Bukoski RD
    Life Sci; 1999; 64(10):887-94. PubMed ID: 10096439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vasopressin on smooth muscle cells of guinea-pig mesenteric vessels.
    Karashima T
    Br J Pharmacol; 1981 Apr; 72(4):673-84. PubMed ID: 7284685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries.
    Matchkov VV; Rahman A; Peng H; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Jul; 142(6):961-72. PubMed ID: 15210581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory actions of adenosine differ between ear and mesenteric arteries in the rabbit.
    Zhang GL; Miyahara H; Suzuki H
    Pflugers Arch; 1989 Oct; 415(1):56-62. PubMed ID: 2622755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of T-type calcium channels in excitatory junction potentials in rat resistance mesenteric arteries.
    Xi Q; Ziogas J; Roberts JA; Evans RJ; Angus JA
    Br J Pharmacol; 2002 Nov; 137(6):805-12. PubMed ID: 12411411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo membrane potentials of smooth muscle cells in the caudal artery of the rat.
    Bryant HJ; Harder DR; Pamnani MB; Haddy FJ
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C78-83. PubMed ID: 4014453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.