These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 827241)

  • 21. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile.
    Zeikus JG; Wolfe RS
    J Bacteriol; 1972 Feb; 109(2):707-15. PubMed ID: 4550816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 7-Mercaptoheptanoylthreonine phosphate functions as component B in ATP-independent methane formation from methyl-CoM with reduced cobalamin as electron donor.
    Ankel-Fuchs D; Böcher R; Thauer RK; Noll KM; Wolfe RS
    FEBS Lett; 1987 Mar; 213(1):123-7. PubMed ID: 3104083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system.
    Santoro N; Konisky J
    J Bacteriol; 1987 Feb; 169(2):660-5. PubMed ID: 3027043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium.
    Leigh JA; Rinehart KL; Wolfe RS
    Biochemistry; 1985 Feb; 24(4):995-9. PubMed ID: 3922409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum).
    Taylor GT; Pirt SJ
    Arch Microbiol; 1977 May; 113(1-2):17-22. PubMed ID: 889384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri.
    Hutten TJ; De Jong MH; Peeters BP; van der Drift C; Vogels GD
    J Bacteriol; 1981 Jan; 145(1):27-34. PubMed ID: 6780512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of sulfide compounds on the metabolism of Methanobacterium strain AZ.
    Wellinger A; Wuhrmann K
    Arch Microbiol; 1977 Oct; 115(1):13-7. PubMed ID: 412476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase.
    Wackett LP; Honek JF; Begley TP; Wallace V; Orme-Johnson WH; Walsh CT
    Biochemistry; 1987 Sep; 26(19):6012-8. PubMed ID: 3120769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.
    Deppenmeier U; Blaut M; Gottschalk G
    Eur J Biochem; 1989 Dec; 186(1-2):317-23. PubMed ID: 2513188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum.
    Gunsalus RP; Romesser JA; Wolfe RS
    Biochemistry; 1978 Jun; 17(12):2374-7. PubMed ID: 98178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum.
    Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 May; 145(1):204-10. PubMed ID: 3109409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine-O3-phosphate.
    Bobik TA; Wolfe RS
    J Biol Chem; 1989 Nov; 264(31):18714-8. PubMed ID: 2509466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathway for coenzyme M biosynthesis in bacteria.
    Wu HH; Pun MD; Wise CE; Streit BR; Mus F; Berim A; Kincannon WM; Islam A; Partovi SE; Gang DR; DuBois JL; Lubner CE; Berkman CE; Lange BM; Peters JW
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2207190119. PubMed ID: 36037354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of S organism isolated from Methanobacillus omelianskii.
    Reddy CA; Bryant MP; Wolin MJ
    J Bacteriol; 1972 Feb; 109(2):539-45. PubMed ID: 5058442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate.
    Lovley DR; Greening RC; Ferry JG
    Appl Environ Microbiol; 1984 Jul; 48(1):81-7. PubMed ID: 6433795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New method for the isolation and identification of methanogenic bacteria.
    Edwards T; McBride BC
    Appl Microbiol; 1975 Apr; 29(4):540-5. PubMed ID: 804855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Component C of the methylcoenzyme M methylreductase system contains bound 7-mercaptoheptanoylthreonine phosphate (HS-HTP).
    Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1986 Sep; 139(3):889-95. PubMed ID: 3094527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate.
    Park SG; Rhee C; Shin SG; Shin J; Mohamed HO; Choi YJ; Chae KJ
    Environ Int; 2019 Oct; 131():105006. PubMed ID: 31330362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.