These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8272432)

  • 1. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter.
    Choi MJ; Coleman AJ; Saunders JE
    Phys Med Biol; 1993 Nov; 38(11):1561-73. PubMed ID: 8272432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock-induced collapse of a gas bubble in shockwave lithotripsy.
    Johnsen E; Colonius T
    J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of constrained and unconstrained bubbles to lithotripter shock wave pulses.
    Ding Z; Gracewski SM
    J Acoust Soc Am; 1994 Dec; 96(6):3636-44. PubMed ID: 7814766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kriging model to study the dynamics of a bubble subjected to tandem shock waves as used in biomedical applications.
    Gutiérrez-Prieto Á; de Icaza-Herrera M; Loske AM; Castaño-Tostado E
    Ultrasonics; 2019 Jan; 91():10-18. PubMed ID: 30029075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
    Wang KG
    Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shock wave-inertial microbubble interaction: a theoretical study based on the Gilmore formulation for bubble dynamics.
    Zhu S; Zhong P
    J Acoust Soc Am; 1999 Nov; 106(5):3024-33. PubMed ID: 10573912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1991; 17(3):245-55. PubMed ID: 1887510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.
    Duryea AP; Cain CA; Tamaddoni HA; Roberts WW; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1619-26. PubMed ID: 25265172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
    Koukas E; Papoutsakis A; Gavaises M
    Ultrason Sonochem; 2023 May; 95():106393. PubMed ID: 37031534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.