These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8272432)

  • 21. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field.
    Sokolov DL; Bailey MR; Crum LA
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1685-95. PubMed ID: 11572377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Killing of Drosophila larvae by the fields of an electrohydraulic lithotripter.
    Carstensen EL; Campbell DS; Hoffman D; Child SZ; Aymé-Bellegarda EJ
    Ultrasound Med Biol; 1990; 16(7):687-98. PubMed ID: 2126407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields.
    Lokhandwalla M; Sturtevant B
    Phys Med Biol; 2001 Feb; 46(2):413-37. PubMed ID: 11229723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and numerical simulation of the bubble cloud dynamics in an ultrasound field for burst wave lithotripsy.
    Maeda K; Colonius T; Maxwell A; Kreider W; Bailey M
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.
    Aymé-Bellegarda EJ
    J Acoust Soc Am; 1990 Aug; 88(2):1054-60. PubMed ID: 2212284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro sonoluminescence and sonochemistry studies with an electrohydraulic shock-wave lithotripter.
    Matula TJ; Hilmo PR; Bailey MR; Crum LA
    Ultrasound Med Biol; 2002 Sep; 28(9):1199-207. PubMed ID: 12401391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Qin J; Zhong P
    Ultrasound Med Biol; 2012 Apr; 38(4):601-10. PubMed ID: 22390990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the accommodation coefficient on nonlinear bubble oscillations.
    Fuster D; Hauke G; Dopazo C
    J Acoust Soc Am; 2010 Jul; 128(1):5-10. PubMed ID: 20649195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shock wave sensors: I. Requirements and design.
    Lewin PA; Schafer ME
    J Lithotr Stone Dis; 1991 Jan; 3(1):3-17. PubMed ID: 10149140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.