These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8272432)

  • 41. Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy.
    Freund JB
    J Acoust Soc Am; 2008 May; 123(5):2867-74. PubMed ID: 18529202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter.
    Coleman AJ; Whitlock M; Leighton T; Saunders JE
    Phys Med Biol; 1993 Nov; 38(11):1545-60. PubMed ID: 8272431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic cavitation generated by an extracorporeal shockwave lithotripter.
    Coleman AJ; Saunders JE; Crum LA; Dyson M
    Ultrasound Med Biol; 1987 Feb; 13(2):69-76. PubMed ID: 3590362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monitoring the coupling of the lithotripter therapy head with skin during routine shock wave lithotripsy with a surveillance camera.
    Bohris C; Roosen A; Dickmann M; Hocaoglu Y; Sandner S; Bader M; Stief CG; Walther S
    J Urol; 2012 Jan; 187(1):157-63. PubMed ID: 22100005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The dependence of the moving sonoluminescing bubble trajectory on the driving pressure.
    Sadighi-Bonabi R; Rezaei-Nasirabad R; Galavani Z
    J Acoust Soc Am; 2009 Nov; 126(5):2266-72. PubMed ID: 19894808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioeffects of positive and negative acoustic pressures in vivo.
    Bailey MR; Dalecki D; Child SZ; Raeman CH; Penney DP; Blackstock DT; Carstensen EL
    J Acoust Soc Am; 1996 Dec; 100(6):3941-6. PubMed ID: 8969491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3511-30. PubMed ID: 22088026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracorporeal shock waves act by shock wave-gas bubble interaction.
    Delius M; Ueberle F; Eisenmenger W
    Ultrasound Med Biol; 1998 Sep; 24(7):1055-9. PubMed ID: 9809639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Liquid compressibility effects during the collapse of a single cavitating bubble.
    Fuster D; Dopazo C; Hauke G
    J Acoust Soc Am; 2011 Jan; 129(1):122-31. PubMed ID: 21302994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parameters influencing piezoelectric shock wave lithotripsy of biliary calculi.
    Schneider HT; May A; Fromm M; Theobaldy S; Hahn EG; Ell C
    J Stone Dis; 1993 Jan; 5(1):24-31. PubMed ID: 10148258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE; Leighton TG
    Ultrasound Med Biol; 1992; 18(3):267-81. PubMed ID: 1595133
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lung damage from exposure to the fields of an electrohydraulic lithotripter.
    Hartman C; Child SZ; Mayer R; Schenk E; Carstensen EL
    Ultrasound Med Biol; 1990; 16(7):675-9. PubMed ID: 2281556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of density and viscosity of fluids on extracorporeal shock wave lithotripsy of gallstones in vitro.
    Nitsche R; Hinrichsen H; Wilhelm R; Fölsch UR
    Eur J Med Res; 1996 Jan; 1(4):204-8. PubMed ID: 9386270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model.
    Pitt WG; Singh RN; Perez KX; Husseini GA; Jack DR
    Ultrason Sonochem; 2014 Mar; 21(2):879-91. PubMed ID: 24035720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.