BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8272570)

  • 1. Metabolism of trimipramine in vitro by human CYP2D6 isozyme.
    Bolaji OO; Coutts RT; Baker GB
    Res Commun Chem Pathol Pharmacol; 1993 Oct; 82(1):111-20. PubMed ID: 8272570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of methoxyphenamine in vitro by a CYP2D6 microsomal preparation.
    Coutts RT; Bolaji OO; Su P; Baker GB
    Drug Metab Dispos; 1994; 22(5):756-60. PubMed ID: 7835228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of imipramine and three metabolites produced by isozyme CYP2D6 expressed in a human cell line.
    Su P; Coutts RT; Baker GB; Daneshtalab M
    Xenobiotica; 1993 Nov; 23(11):1289-98. PubMed ID: 8310712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of imipramine in vitro by isozyme CYP2D6 expressed in a human cell line, and observations on metabolite stability.
    Coutts RT; Su P; Baker GB; Daneshtalab M
    J Chromatogr; 1993 Jun; 615(2):265-72. PubMed ID: 8335704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic ring oxidation of N-n-butylamphetamine is enhanced in the rat by prior treatment with quinidine.
    Coutts RT; Baker GB; Malek F; Hussain MS
    Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):15-24. PubMed ID: 1801101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes.
    Narimatsu S; Kariya S; Isozaki S; Ohmori S; Kitada M; Hosokawa S; Masubuchi Y; Suzuki T
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1262-8. PubMed ID: 8323546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients.
    Eap CB; Bender S; Gastpar M; Fischer W; Haarmann C; Powell K; Jonzier-Perey M; Cochard N; Baumann P
    Ther Drug Monit; 2000 Apr; 22(2):209-14. PubMed ID: 10774635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation.
    Akutsu T; Kobayashi K; Sakurada K; Ikegaya H; Furihata T; Chiba K
    Drug Metab Dispos; 2007 Jan; 35(1):72-8. PubMed ID: 17020955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of N-substitution of 7-methoxy-4-(aminomethyl)-coumarin on cytochrome P450 metabolism and selectivity.
    Venhorst J; Onderwater RC; Meerman JH; Commandeur JN; Vermeulen NP
    Drug Metab Dispos; 2000 Dec; 28(12):1524-32. PubMed ID: 11095593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved.
    Boberg M; Angerbauer R; Fey P; Kanhai WK; Karl W; Kern A; Ploschke J; Radtke M
    Drug Metab Dispos; 1997 Mar; 25(3):321-31. PubMed ID: 9172950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of trimipramine in man.
    Maurer H
    Arzneimittelforschung; 1989 Jan; 39(1):101-3. PubMed ID: 2719736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinine is a more potent inhibitor than quinidine in rat of the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase.
    Muralidharan G; Hawes EM; McKay G; Midha KK
    Xenobiotica; 1991 Nov; 21(11):1441-50. PubMed ID: 1763518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fenproporex N-dealkylation to amphetamine--enantioselective in vitro studies in human liver microsomes as well as enantioselective in vivo studies in Wistar and Dark Agouti rats.
    Kraemer T; Pflugmann T; Bossmann M; Kneller NM; Peters FT; Paul LD; Springer D; Staack RF; Maurer HH
    Biochem Pharmacol; 2004 Sep; 68(5):947-57. PubMed ID: 15294457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite.
    Flanagan JU; Maréchal JD; Ward R; Kemp CA; McLaughlin LA; Sutcliffe MJ; Roberts GC; Paine MJ; Wolf CR
    Biochem J; 2004 Jun; 380(Pt 2):353-60. PubMed ID: 14992686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4.
    Störmer E; von Moltke LL; Shader RI; Greenblatt DJ
    Drug Metab Dispos; 2000 Oct; 28(10):1168-75. PubMed ID: 10997935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of trimipramine in the rat.
    Coutts RT; Hussain MS; Micetich RG; Daneshtalab M; Baker GB
    Biomed Environ Mass Spectrom; 1990 Dec; 19(13):793-806. PubMed ID: 2099870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of polymorphic debrisoquin 4-hydroxylase activity in the stereoselective disposition of mexiletine in humans.
    Abolfathi Z; Fiset C; Gilbert M; Moerike K; Bélanger PM; Turgeon J
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1196-201. PubMed ID: 8371133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of iprindole on the metabolism of trimipramine in the rat.
    Coutts RT; Hussain MS; Baker GB
    J Psychiatry Neurosci; 1991 Dec; 16(5):272-5. PubMed ID: 1797102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of cytochrome P450 2D6-catalyzed sparteine metabolism in humans.
    Ebner T; Meese CO; Eichelbaum M
    Mol Pharmacol; 1995 Dec; 48(6):1078-86. PubMed ID: 8848008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between site specificity and electrophilic frontier values in the metabolic hydroxylation of biphenyl, di-aromatic and CYP2D6 substrates: a molecular modelling study.
    Ackland MJ
    Xenobiotica; 1993 Oct; 23(10):1135-44. PubMed ID: 8259695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.