BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8274268)

  • 1. Nucleosides and glutamine are primary energy substrates for embryonic and adult chicken red cells.
    Mathew A; Grdisa M; Johnstone RM
    Biochem Cell Biol; 1993; 71(5-6):288-95. PubMed ID: 8274268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate.
    Young JD; Paterson AR; Henderson JF
    Biochim Biophys Acta; 1985 Oct; 842(2-3):214-24. PubMed ID: 3902093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of red blood cells with purines and nucleosides. II. Uptake and utilization of purines and nucleosides by stored red blood cells.
    Strauss D; de Verdier CH
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):417-33. PubMed ID: 6159280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The liver is an organ site for the release of inosine metabolized by non-glycolytic pig red cells.
    Zeidler RB; Metzler MH; Moran JB; Kim HD
    Biochim Biophys Acta; 1985 Mar; 838(3):321-8. PubMed ID: 3970973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrobenzylthioinosine: an in vivo inhibitor of pig erythrocyte energy metabolism.
    Young JD; Jarvis SM; Clanachan AS; Henderson JF; Paterson AR
    Am J Physiol; 1986 Jul; 251(1 Pt 1):C90-4. PubMed ID: 3728661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is inosine the physiological energy source of pig erythrocytes?
    Jarvis SM; Young JD; Ansay M; Archibald AL; Harkness RA; Simmonds RJ
    Biochim Biophys Acta; 1980 Mar; 597(1):183-8. PubMed ID: 7370243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on avian erythrocyte metabolism. XVI. Accumulation of 2,3-bisphosphoglycerate with shifts in oxygen affinity of chicken erythrocytes.
    Isaacks RE; Lai LL; Goldman PH; Kim CY
    Arch Biochem Biophys; 1987 Aug; 257(1):177-85. PubMed ID: 3115178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoside translocation in sheep reticulocytes and fetal erythrocytes: a proposed model for the nucleoside transporter.
    Jarvis SM; Young JD
    J Physiol; 1982 Mar; 324():47-66. PubMed ID: 6284922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of adenosine on glucose metabolism of Rana ridibunda erythrocytes.
    Kaloyianni M; Michaelidis B; Moutou K
    J Exp Biol; 1993 Apr; 177():41-50. PubMed ID: 8487000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites.
    Jarvis SM; McBride D; Young JD
    J Physiol; 1982 Mar; 324():31-46. PubMed ID: 7097603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on avian erythrocyte metabolism. XII. The synthesis and degradation of inositol pentakis (dihydrogen phosphate).
    Isaacks RE; Kim CY; Johnson AE; Goldman PH; Harkness DR
    Poult Sci; 1982 Nov; 61(11):2271-81. PubMed ID: 7163109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium transport and nucleoside metabolism in human red cells.
    Whittam R; Wiley JS
    J Physiol; 1967 Aug; 191(3):633-52. PubMed ID: 6051796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy metabolism in adenosine deaminase-inhibited human erythrocytes.
    Buc HA; Thuillier L; Hamet M; Garreau F; Moncion A; PĂ©rignon JL
    Clin Chim Acta; 1986 Apr; 156(1):61-9. PubMed ID: 3486057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation.
    Jurkowitz MS; Litsky ML; Browning MJ; Hohl CM
    J Neurochem; 1998 Aug; 71(2):535-48. PubMed ID: 9681443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions.
    Plagemann PG; Wohlhueter RM; Kraupp M
    Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cow red blood cells. III. Postnatal adaptation of energy metabolism in the calf red blood cells.
    Kim HD
    Biochim Biophys Acta; 1979 Nov; 588(1):44-54. PubMed ID: 497245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations.
    Young JD
    J Physiol; 1978 Apr; 277():325-39. PubMed ID: 650536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.
    Rubinstein D; Warrendorf E
    Can J Biochem; 1975 Jun; 53(6):671-8. PubMed ID: 1139405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H
    Jin Z; Zhang Q; Wondimu E; Verma R; Fu M; Shuang T; Arif HM; Wu L; Wang R
    Am J Physiol Regul Integr Comp Physiol; 2020 Jul; 319(1):R69-R78. PubMed ID: 32432916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites.
    Jarvis SM; Young JD
    Biochem J; 1980 Aug; 190(2):377-83. PubMed ID: 7470056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.