BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8274402)

  • 1. Localization of the approximately 12 kDa M(r) discrepancy in gel migration of the mouse glucocorticoid receptor to the major phosphorylated cyanogen bromide fragment in the transactivating domain.
    Hutchison KA; Dalman FC; Hoeck W; Groner B; Pratt WB
    J Steroid Biochem Mol Biol; 1993 Dec; 46(6):681-6. PubMed ID: 8274402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of phosphorylation sites with respect to the functional domains of the mouse L cell glucocorticoid receptor.
    Dalman FC; Sanchez ER; Lin AL; Perini F; Pratt WB
    J Biol Chem; 1988 Sep; 263(25):12259-67. PubMed ID: 3045115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylated sites within the functional domains of the approximately 100-kDa steroid-binding subunit of glucocorticoid receptors.
    Smith LI; Mendel DB; Bodwell JE; Munck A
    Biochemistry; 1989 May; 28(10):4490-8. PubMed ID: 2765497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mouse glucocorticoid receptor DNA-binding domain is not phosphorylated in vivo.
    van der Weijden Benjamin WS; Hendry WJ; Harrison RW
    Biochem Biophys Res Commun; 1990 Jan; 166(2):931-6. PubMed ID: 2302247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormone-dependent phosphorylation of the glucocorticoid receptor occurs mainly in the amino-terminal transactivation domain.
    Hoeck W; Groner B
    J Biol Chem; 1990 Apr; 265(10):5403-8. PubMed ID: 2108136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that the hormone-binding domain of the mouse glucocorticoid receptor directly represses DNA binding activity in a major portion of receptors that are "misfolded" after removal of hsp90.
    Hutchison KA; Czar MJ; Pratt WB
    J Biol Chem; 1992 Feb; 267(5):3190-5. PubMed ID: 1737773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural organization of the human glucocorticoid receptor determined by one- and two-dimensional gel electrophoresis of proteolytic receptor fragments.
    Smith AC; Harmon JM
    Biochemistry; 1987 Jan; 26(2):646-52. PubMed ID: 3828327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphotryptic peptide analysis of human progesterone receptor. New phosphorylated sites formed in nuclei after hormone treatment.
    Sheridan PL; Evans RM; Horwitz KB
    J Biol Chem; 1989 Apr; 264(11):6520-8. PubMed ID: 2703504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells.
    Flynn A; Proud CG
    J Biol Chem; 1995 Sep; 270(37):21684-8. PubMed ID: 7665584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of serines-1035/1037 in the kinase domain of the insulin receptor as protein kinase C alpha mediated phosphorylation sites.
    Liu F; Roth RA
    FEBS Lett; 1994 Oct; 352(3):389-92. PubMed ID: 7926007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the Dunaliella acidophila plasma membrane H(+)-ATPase by trypsin cleavage of a fragment that contains a phosphorylation site.
    Sekler I; Weiss M; Pick U
    Plant Physiol; 1994 Aug; 105(4):1125-32. PubMed ID: 7972491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steroid-induced conformational changes of rat glucocorticoid receptor cause altered trypsin cleavage of the putative helix 6 in the ligand binding domain.
    Xu M; Modarress KJ; Meeker JE; Simons SS
    Mol Cell Endocrinol; 1999 Sep; 155(1-2):85-100. PubMed ID: 10580842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of phosphorylated sites in the mouse glucocorticoid receptor.
    Bodwell JE; Ortí E; Coull JM; Pappin DJ; Smith LI; Swift F
    J Biol Chem; 1991 Apr; 266(12):7549-55. PubMed ID: 2019585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo phosphorylation of Drosophila melanogaster nuclear lamins during both interphase and mitosis.
    Rzepecki R; Fisher PA
    Cell Mol Biol Lett; 2002; 7(3):859-76. PubMed ID: 12378269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the 48-kDa subunit of the glycine receptor by protein kinase C.
    Ruiz-Gómez A; Vaello ML; Valdivieso F; Mayor F
    J Biol Chem; 1991 Jan; 266(1):559-66. PubMed ID: 1845981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of phorbol ester-stimulated serine phosphorylation of the human insulin receptor.
    Feener EP; Shiba T; Hu KQ; Wilden PA; White MF; King GL
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):43-50. PubMed ID: 7945263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells.
    Wakim BT; Aswad GD
    J Biol Chem; 1994 Jan; 269(4):2722-7. PubMed ID: 8300603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-Src phosphorylates epidermal growth factor receptor on tyrosine 845.
    Sato K; Sato A; Aoto M; Fukami Y
    Biochem Biophys Res Commun; 1995 Oct; 215(3):1078-87. PubMed ID: 7488034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant mobility phenomena of the DNA repair protein XPA.
    Iakoucheva LM; Kimzey AL; Masselon CD; Smith RD; Dunker AK; Ackerman EJ
    Protein Sci; 2001 Jul; 10(7):1353-62. PubMed ID: 11420437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry.
    Bantscheff M; Weiss V; Glocker MO
    Biochemistry; 1999 Aug; 38(34):11012-20. PubMed ID: 10460156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.