BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8274495)

  • 1. The membrane potential has no detectable effect on the phosphocholine headgroup conformation in large unilamellar phosphatidylcholine vesicles as determined by 2H-NMR.
    Leenhouts JM; Chupin V; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1993 Dec; 1153(2):257-61. PubMed ID: 8274495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2H NMR detection of transmembrane potential-driven tetraphenylphosphonium transbilayer redistribution.
    Franzin CM; Macdonald PM
    Biochemistry; 1996 Jan; 35(3):851-8. PubMed ID: 8547265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study.
    Bechinger B; Seelig J
    Chem Phys Lipids; 1991; 58(1-2):1-5. PubMed ID: 1934192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2H-NMR comparative study of phosphocholine group conformation in bilayers composed of diacyl and dialkyl phosphatidylcholines.
    Bragina NA; Chupin VV
    Membr Cell Biol; 2000; 14(3):421-8. PubMed ID: 11368502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR.
    Ulrich AS; Watts A
    Biophys J; 1994 May; 66(5):1441-9. PubMed ID: 8061193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid headgroup-headgroup electrostatic interactions in mixed bilayers of cardiolipin with phosphatidylcholines studied by 2H NMR.
    Pinheiro TJ; Duralski AA; Watts A
    Biochemistry; 1994 Apr; 33(16):4896-902. PubMed ID: 8161549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of staphylococcal delta-toxin on the phosphatidylcholine headgroup as observed using 2H-NMR.
    Rydall JR; Macdonald PM
    Biochim Biophys Acta; 1992 Nov; 1111(2):211-20. PubMed ID: 1420257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the two monolayers of a lipid bilayer in giant unilamellar vesicles using deuterium nuclear magnetic resonance.
    Marassi FM; Shivers RR; Macdonald PM
    Biochemistry; 1993 Sep; 32(38):9936-43. PubMed ID: 8399163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures.
    Hsieh CH; Wu WG
    Biophys J; 1995 Jul; 69(1):4-12. PubMed ID: 7669908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.
    Bonev BB; Morrow MR
    Biophys J; 1995 Aug; 69(2):518-23. PubMed ID: 8527666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface charge response of the phosphatidylcholine head group in bilayered micelles from phosphorus and deuterium nuclear magnetic resonance.
    Crowell KJ; Macdonald PM
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):21-30. PubMed ID: 9889304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of hydrophobic ions in phospholipid bilayers using 1H nuclear Overhauser effect spectroscopy.
    Ellena JF; Dominey RN; Archer SJ; Xu ZC; Cafiso DS
    Biochemistry; 1987 Jul; 26(14):4584-92. PubMed ID: 3663609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bacteriorhodopsin on the orientation of the headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in bilayers: a 31P- and 2H-NMR study.
    Gale P; Watts A
    Biochim Biophys Acta; 1992 May; 1106(2):317-24. PubMed ID: 1596511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR.
    Roux M; Bloom M
    Biochemistry; 1990 Jul; 29(30):7077-89. PubMed ID: 2223761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of stigmastanol and stigmastanyl-phosphorylcholine, two plasma cholesterol lowering substances, on synthetic phospholipid membranes. A 2H- and 31P-NMR study.
    Habiger RG; Cassal JM; Kempen HJ; Seelig J
    Biochim Biophys Acta; 1992 Jan; 1103(1):69-76. PubMed ID: 1730022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential in liposomes measured by the transmembrane distribution of 86Rb+, tetraphenylphosphonium or triphenylmethylphosphonium: effect of cholesterol in the lipid bilayer.
    Nakazato K; Murakami N; Konishi T; Hatano Y
    Biochim Biophys Acta; 1988 Dec; 946(1):143-50. PubMed ID: 3207727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.
    Kumar VV; Malewicz B; Baumann WJ
    Biophys J; 1989 Apr; 55(4):789-92. PubMed ID: 2720071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region.
    Hsieh CH; Sue SC; Lyu PC; Wu WG
    Biophys J; 1997 Aug; 73(2):870-7. PubMed ID: 9251804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transbilayer distribution in small unilamellar phosphatidylglycerol-phosphatidylcholine vesicles.
    Nordlund JR; Schmidt CF; Thompson TE
    Biochemistry; 1981 Oct; 20(22):6415-20. PubMed ID: 7197988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.