BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8274495)

  • 41. Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single-bilayer vesicles.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1981 Feb; 640(3):734-47. PubMed ID: 6163458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes.
    Volke F; Pampel A
    Biophys J; 1995 May; 68(5):1960-5. PubMed ID: 7612838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydration, structure, and molecular interactions in the headgroup region of dioleoylphosphatidylcholine bilayers: an electron spin resonance study.
    Ge M; Freed JH
    Biophys J; 2003 Dec; 85(6):4023-40. PubMed ID: 14645091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study.
    Roux M; Bloom M
    Biophys J; 1991 Jul; 60(1):38-44. PubMed ID: 1883944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of ethanol on the organization of phosphocholine lipid bilayers.
    Pillman HA; Blanchard GJ
    J Phys Chem B; 2010 Mar; 114(11):3840-6. PubMed ID: 20192176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of non-bilayer structures induced by M13 coat protein depends on the conformation of the protein.
    Sanders JC; Poile TW; Wolfs JA; Hemminga MA
    Biochim Biophys Acta; 1992 Oct; 1110(2):218-24. PubMed ID: 1390851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A (2)H NMR study of macroscopically aligned bilayer membranes containing interfacial hydroxyl residues.
    Kurze V; Steinbauer B; Huber T; Beyer K
    Biophys J; 2000 May; 78(5):2441-51. PubMed ID: 10777740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors affecting the motion of the polar headgroup in phospholipid bilayers. A 31P NMR study of unsonicated phosphatidylcholine liposomes.
    Cullis PR; De Kruyff B; Richards RE
    Biochim Biophys Acta; 1976 Mar; 426(3):433-46. PubMed ID: 1268206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations.
    Akutsu H; Nagamori T
    Biochemistry; 1991 May; 30(18):4510-6. PubMed ID: 2021641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine.
    Halladay HN; Stark RE; Ali S; Bittman R
    Biophys J; 1990 Dec; 58(6):1449-61. PubMed ID: 2275962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes.
    Terzi E; Hölzemann G; Seelig J
    Biochemistry; 1997 Dec; 36(48):14845-52. PubMed ID: 9398206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spanning or looping? The order and conformation of bipolar phospholipids in lipid membranes using 2H NMR spectroscopy.
    Cuccia LA; Morin F; Beck A; Hébert N; Just G; Lennox RB
    Chemistry; 2000 Dec; 6(23):4379-84. PubMed ID: 11140968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Nernst potential as a driving force of the fast transmembrane diffusion (flip-flop) of the anionic natural phospholipid phosphatidylethanol].
    Viktorov AV
    Biofizika; 2004; 49(6):1084-90. PubMed ID: 15612550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics of channel formation of gramicidins A and B in phospholipid vesicle membranes.
    Easton PL; Hinton JF; Newkirk DK
    Biophys J; 1990 Jan; 57(1):63-9. PubMed ID: 1688716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy.
    Kleinschmidt JH; Tamm LK
    Biophys J; 2002 Aug; 83(2):994-1003. PubMed ID: 12124281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y; Han X; Gross RW
    Biochemistry; 1998 Feb; 37(8):2346-55. PubMed ID: 9485381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers.
    Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the solvation of the phosphocholine headgroup in an aqueous propylene glycol solution.
    Rhys NH; Al-Badri MA; Ziolek RM; Gillams RJ; Collins LE; Lawrence MJ; Lorenz CD; McLain SE
    J Chem Phys; 2018 Apr; 148(13):135102. PubMed ID: 29626902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of transmembrane pH gradients and membrane potentials in liposomes.
    Harrigan PR; Hope MJ; Redelmeier TE; Cullis PR
    Biophys J; 1992 Nov; 63(5):1336-45. PubMed ID: 1477283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients.
    Hope MJ; Redelmeier TE; Wong KF; Rodrigueza W; Cullis PR
    Biochemistry; 1989 May; 28(10):4181-7. PubMed ID: 2765480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.