These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8274536)

  • 1. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of hand equilibrium trajectories in multi-joint arm movements.
    Flash T
    Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual trajectories, joint stiffness, and changes in the limb natural frequency during single-joint oscillatory movements.
    Latash ML
    Neuroscience; 1992 Jul; 49(1):209-20. PubMed ID: 1407547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
    Gomi H; Kawato M
    Biol Cybern; 1997 Mar; 76(3):163-71. PubMed ID: 9151414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive Control for Multi-Joint Arm Movements Based on Virtual Trajectories.
    Uno Y; Suzuki T; Kagawa T
    Neural Comput; 2020 Nov; 32(11):2212-2236. PubMed ID: 32946713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model.
    Koike Y; Kawato M
    Biol Cybern; 1995 Sep; 73(4):291-300. PubMed ID: 7578470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability properties of human reaching movements.
    Won J; Hogan N
    Exp Brain Res; 1995; 107(1):125-36. PubMed ID: 8751070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.
    He X; Du YF; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):634-47. PubMed ID: 23268385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-joint dynamics and the development of movement control.
    Otten E
    Neural Plast; 2005; 12(2-3):89-98; discussion 263-72. PubMed ID: 16097477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.
    Latash ML
    Biol Cybern; 1992; 67(4):377-84. PubMed ID: 1515515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling multijoint motor behavior.
    Hogan N; Bizzi E; Mussa-Ivaldi FA; Flash T
    Exerc Sport Sci Rev; 1987; 15():153-90. PubMed ID: 3297722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control.
    Schweighofer N; Arbib MA; Kawato M
    Eur J Neurosci; 1998 Jan; 10(1):86-94. PubMed ID: 9753116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deducing planning variables from experimental arm trajectories: pitfalls and possibilities.
    Hollerbach JM; Atkeson CG
    Biol Cybern; 1987; 56(5-6):279-92. PubMed ID: 3620529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.