These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8274547)

  • 1. Kinematic description of variability of fast movements: analytical and experimental approaches.
    Gutman SR; Latash ML; Almeida GL; Gottlieb GL
    Biol Cybern; 1993; 69(5-6):485-92. PubMed ID: 8274547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic models and human elbow flexion movements: quantitative analysis.
    Wiegner AW; Wierzbicka MM
    Exp Brain Res; 1992; 88(3):665-73. PubMed ID: 1587325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Adequate control theory" for human single-joint elbow flexion on two tasks.
    Gottlieb GL; Chen CH; Corcos DM
    Ann Biomed Eng; 1995; 23(4):388-98. PubMed ID: 7486346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of dominant hand to non-dominant hand in conduction of reaching task from 3D kinematic data: Trade-off between successful rate and movement efficiency.
    Xiao X; Hu HJ; Li LF; Li L
    Math Biosci Eng; 2019 Feb; 16(3):1611-1624. PubMed ID: 30947435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practice and transfer effects during fast single-joint elbow movements in individuals with Down syndrome.
    Almeida GL; Corcos DM; Latash ML
    Phys Ther; 1994 Nov; 74(11):1000-12; discussion 1012-6. PubMed ID: 7972361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the variability of movement trajectories with practice.
    Darling WG; Cooke JD
    J Mot Behav; 1987 Sep; 19(3):291-309. PubMed ID: 14988049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic functions of variability of simple pre-planned movements.
    Gutman SR; Gottlieb GL
    Biol Cybern; 1992; 68(1):63-73. PubMed ID: 1486132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course and temporal order of changes in movement kinematics during motor learning: effect of joint and instruction.
    Kempf T; Corcos DM; Flament D
    Exp Brain Res; 2001 Feb; 136(3):295-302. PubMed ID: 11243471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles for learning single-joint movements. I. Enhanced performance by practice.
    Corcos DM; Jaric S; Agarwal GC; Gottlieb GL
    Exp Brain Res; 1993; 94(3):499-513. PubMed ID: 8359264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of elbow joint kinematics on wrist speed in cricket fast bowling.
    Middleton KJ; Alderson JA; Elliott BC; Mills PM
    J Sports Sci; 2015; 33(15):1622-31. PubMed ID: 25643181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Braking of fast and accurate elbow flexions in the monkey.
    Flament D; Hore J; Vilis T
    J Physiol; 1984 Apr; 349():195-202. PubMed ID: 6737291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
    Morrison CS; Knudson D; Clayburn C; Haywood P
    Percept Mot Skills; 2005 Jun; 100(3 Pt 1):599-606. PubMed ID: 16060418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined influence of task accuracy and pace on motor variability in a standardised repetitive precision task.
    Srinivasan D; Mathiassen SE; Samani A; Madeleine P
    Ergonomics; 2015; 58(8):1388-97. PubMed ID: 25683668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].
    Latash M; Gottleib G
    Biofizika; 1990; 35(5):870-4. PubMed ID: 2083283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic invariants during cyclical arm movements.
    Dounskaia N
    Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trajectory formation of vertical arm movements through a via-point: a limit of validity of the minimum-jerk model.
    Furuna T; Nagasaki H
    Percept Mot Skills; 1993 Jun; 76(3 Pt 1):875-84. PubMed ID: 8321602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of joint variability in bimanual pointing tasks.
    Domkin D; Laczko J; Jaric S; Johansson H; Latash ML
    Exp Brain Res; 2002 Mar; 143(1):11-23. PubMed ID: 11907686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.