BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 8274633)

  • 1. Budding and fission of vesicles.
    Döbereiner HG; Käs J; Noppl D; Sprenger I; Sackmann E
    Biophys J; 1993 Oct; 65(4):1396-403. PubMed ID: 8274633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 May; 1788(5):1126-37. PubMed ID: 19150608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae".
    Meyer HW; Westermann M; Stumpf M; Richter W; Ulrich AS; Hoischen C
    J Struct Biol; 1998 Dec; 124(1):77-87. PubMed ID: 9931276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer.
    Ulrich AS; Tichelaar W; Förster G; Zschörnig O; Weinkauf S; Meyer HW
    Biophys J; 1999 Aug; 77(2):829-41. PubMed ID: 10423429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects.
    Kulkarni VS; Anderson WH; Brown RE
    Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
    Needham D; Nunn RS
    Biophys J; 1990 Oct; 58(4):997-1009. PubMed ID: 2249000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles.
    Dufourcq J; Faucon JF; Fourche G; Dasseux JL; Le Maire M; Gulik-Krzywicki T
    Biochim Biophys Acta; 1986 Jul; 859(1):33-48. PubMed ID: 3718985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes.
    Maulik PR; Shipley GG
    Biophys J; 1995 Nov; 69(5):1909-16. PubMed ID: 8580334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of curvature and phase transition in lipid sorting and fission of membrane tubules.
    Roux A; Cuvelier D; Nassoy P; Prost J; Bassereau P; Goud B
    EMBO J; 2005 Apr; 24(8):1537-45. PubMed ID: 15791208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular properties of a stratum corneum model lipid system: large unilamellar vesicles.
    Hatfield RM; Fung LW
    Biophys J; 1995 Jan; 68(1):196-207. PubMed ID: 7711242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study.
    Trandum C; Westh P; Jørgensen K; Mouritsen OG
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):179-88. PubMed ID: 10446301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine.
    Filippov A; Munavirov B; Gröbner G; Rudakova M
    Magn Reson Imaging; 2012 Apr; 30(3):413-21. PubMed ID: 22260936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane fusion in vesicles of oligomerizable lipids.
    Ravoo BJ; Weringa WD; Engberts JB
    Biophys J; 1999 Jan; 76(1 Pt 1):374-86. PubMed ID: 9876149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 Sep; 1788(9):1877-89. PubMed ID: 19616506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases.
    Veiga MP; Arrondo JL; Goñi FM; Alonso A
    Biophys J; 1999 Jan; 76(1 Pt 1):342-50. PubMed ID: 9876146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles.
    Meyer HW; Bunjes H; Ulrich AS
    Chem Phys Lipids; 1999 Jun; 99(2):111-23. PubMed ID: 10390835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.