BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 8274639)

  • 1. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films.
    Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D
    Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light.
    Wang L; Shen Z; Wang J; Li B; Chen F; Yang W; Feng X
    Biochem Biophys Res Commun; 2006 May; 343(3):899-903. PubMed ID: 16564498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of the retinal subpicosecond photoisomerization process in acid purple bacteriorhodopsin and some bacteriorhodopsin mutants by chloride ions.
    Logunov SL; el-Sayed MA; Lanyi JK
    Biophys J; 1996 Sep; 71(3):1545-53. PubMed ID: 8874028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of the 13-cis form (bR548) of bacteriorhodopsin and its photocycle.
    Logunov I; Humphrey W; Schulten K; Sheves M
    Biophys J; 1995 Apr; 68(4):1270-82. PubMed ID: 7787017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon absorption of bacteriorhodopsin: formation of a red-shifted thermally stable photoproduct F620.
    Fischer T; Hampp NA
    Biophys J; 2005 Aug; 89(2):1175-82. PubMed ID: 15894635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pH dependence of the subpicosecond retinal photoisomerization process in bacteriorhodopsin: evidence for parallel photocycles.
    Song L; Logunov SL; Yang D; el-Sayed MA
    Biophys J; 1994 Nov; 67(5):2008-12. PubMed ID: 7858138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds.
    Kao YM; Cheng CH; Syue ML; Huang HY; Chen IC; Yu TY; Chu LK
    J Phys Chem B; 2019 Mar; 123(9):2032-2039. PubMed ID: 30742764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin.
    Druckmann S; Heyn MP; Lanyi JK; Ottolenghi M; Zimanyi L
    Biophys J; 1993 Sep; 65(3):1231-4. PubMed ID: 8241403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration.
    Wand A; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2012 Sep; 116(35):10444-52. PubMed ID: 22329764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization.
    Farrar MR; Lakshmi KV; Smith SO; Brown RS; Raap J; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 1993 Jul; 65(1):310-5. PubMed ID: 8369438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototransformation and proton pumping activity of the 14-fluoro bacteriorhodopsin derivatives.
    Druzhko AB; Robertson B; Alvarez R; de Lera AR; Weetall HH
    Biochim Biophys Acta; 1998 May; 1371(2):371-81. PubMed ID: 9630725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.
    Robertson B; Lukashev EP
    Biophys J; 1995 Apr; 68(4):1507-17. PubMed ID: 7787036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and photochemistry of 13-desmethyl bacteriorhodopsin.
    Gillespie NB; Ren L; Ramos L; Daniell H; Dews D; Utzat KA; Stuart JA; Buck CH; Birge RR
    J Phys Chem B; 2005 Aug; 109(33):16142-52. PubMed ID: 16853051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A covalent link between the chromophore and the protein backbone of bacteriorhodopsin is not required for forming a photochemically active pigment analogous to the wild type.
    Friedman N; Druckmann S; Lanyi J; Needleman R; Lewis A; Ottolenghi M; Sheves M
    Biochemistry; 1994 Mar; 33(8):1971-6. PubMed ID: 8117653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment.
    Aharoni A; Ottolenghi M; Sheves M
    Biophys J; 2002 May; 82(5):2617-26. PubMed ID: 11964248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.