These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8274653)

  • 1. Multiple hydration layers in cubic insulin crystals.
    Badger J
    Biophys J; 1993 Oct; 65(4):1656-9. PubMed ID: 8274653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals.
    Soares AS; Caspar DLD
    J Struct Biol; 2017 Dec; 200(3):213-218. PubMed ID: 28838818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water structure in cubic insulin crystals.
    Badger J; Caspar DL
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):622-6. PubMed ID: 1988957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Display and interpretation of solvent electron density distributions in insulin crystals.
    Badger J
    J Mol Graph; 1993 Dec; 11(4):218-21, 233. PubMed ID: 8136324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of cubic insulin crystals in glucose solutions.
    Yu B; Caspar DL
    Biophys J; 1998 Jan; 74(1):616-22. PubMed ID: 9449362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and selectivity of a monovalent cation binding site in cubic insulin crystals.
    Badger J; Kapulsky A; Gursky O; Bhyravbhatla B; Caspar DL
    Biophys J; 1994 Feb; 66(2 Pt 1):286-92. PubMed ID: 8161680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron diffraction analysis of the solvent accessible volume in cubic insulin crystals.
    Badger J; Kapulsky A; Caspar DL; Korszun R
    Nat Struct Biol; 1995 Jan; 2(1):77-80. PubMed ID: 7719858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole.
    Higo J; Nakasako M
    J Comput Chem; 2002 Nov; 23(14):1323-36. PubMed ID: 12214315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes in cubic insulin crystals in the pH range 7-11.
    Gursky O; Badger J; Li Y; Caspar DL
    Biophys J; 1992 Nov; 63(5):1210-20. PubMed ID: 1477273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global model of the protein-solvent interface.
    Lounnas V; Pettitt BM; Phillips GN
    Biophys J; 1994 Mar; 66(3 Pt 1):601-14. PubMed ID: 8011893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-beam interference is a sensitive measure of the efficacy of macromolecular refinement techniques.
    Soares AS; Caspar DL; Weckert E; Héroux A; Hölzer K; Schroer K; Zellner J; Schneider D; Nolan W; Sweet RM
    Acta Crystallogr D Biol Crystallogr; 2003 Oct; 59(Pt 10):1716-24. PubMed ID: 14501109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
    Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM
    Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description of ordered solvent molecules in a platinated decanucleotide duplex refined at 1.6A resolution against experimental MAD phases.
    Coste F; Shepard W; Zelwer C
    Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):431-40. PubMed ID: 11856828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disordered water within a hydrophobic protein cavity visualized by x-ray crystallography.
    Yu B; Blaber M; Gronenborn AM; Clore GM; Caspar DL
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):103-8. PubMed ID: 9874779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly.
    Yip CM; DeFelippis MR; Frank BH; Brader ML; Ward MD
    Biophys J; 1998 Sep; 75(3):1172-9. PubMed ID: 9726919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures.
    Jiang JS; Brünger AT
    J Mol Biol; 1994 Oct; 243(1):100-15. PubMed ID: 7932732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination of quinoprotein methylamine dehydrogenase from Thiobacillus versutus.
    Vellieux FM; Kalk KH; Drenth J; Hol WG
    Acta Crystallogr B; 1990 Dec; 46 ( Pt 6)():806-23. PubMed ID: 2085423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using prime-and-switch phasing to reduce model bias in molecular replacement.
    Terwilliger TC
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 1):2144-9. PubMed ID: 15572767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.