BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8275145)

  • 1. Temperature distribution beneath pediatric electrosurgical dispersive electrodes: a model study.
    Tan KS; Hinberg I
    Biomed Instrum Technol; 1993; 27(6):506-13. PubMed ID: 8275145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposed standard for evaluating the thermal performance of pediatric dispersive electrodes.
    Kim Y; Webster JG
    Med Instrum; 1986; 20(6):327-30. PubMed ID: 3807797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosurgical dispersive electrodes heat cutaneous and subcutaneous skin layers.
    Edrich J; Cookson CC
    Med Instrum; 1987 Apr; 21(2):81-6. PubMed ID: 3614035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal behavior of electrolyte-coated metal-foil dispersive electrodes.
    Pearce JA; Geddes LA; Bourland JD; Silva LF
    Med Instrum; 1979; 13(5):298-300. PubMed ID: 502931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proposed method for quantitative performance evaluation of electrosurgical dispersive electrodes.
    Pearce JA
    Med Instrum; 1979; 13(1):52-4. PubMed ID: 423821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of gelled-pad design on the performance of electrosurgical dispersive electrodes.
    Caruso PM; Pearce JA; DeWitt DP
    J Biomech Eng; 1982 Nov; 104(4):324-9. PubMed ID: 7154653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanostructured thin film on minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat.
    Ou KL; Weng CC; Sugiatno E; Ruslin M; Lin YH; Cheng HY
    Surg Endosc; 2016 Jul; 30(7):3035-49. PubMed ID: 26563510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of skin temperature elevation and heat diffusion with electrosurgical currents.
    Aubry-Frize M; Leduc A
    Med Instrum; 1980; 14(5):272-5. PubMed ID: 7453602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermochromic dispersive electrode can measure the underlying skin temperature and prevent burns during radiofrequency ablation.
    Thiagalingam A; Pouliopoulos J; Barry MA; Salisbury E; Pathmanathan N; Boyd A; Ross DL; Kovoor P
    J Cardiovasc Electrophysiol; 2005 Jul; 16(7):781-8. PubMed ID: 16050838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrosurgery: part II. Technology, applications, and safety of electrosurgical devices.
    Taheri A; Mansoori P; Sandoval LF; Feldman SR; Pearce D; Williford PM
    J Am Acad Dermatol; 2014 Apr; 70(4):607.e1-607.e12. PubMed ID: 24629362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin burns from electrosurgical current.
    Pearce JA; Geddes LA; Van Vleet JF; Foster K; Allen J
    Med Instrum; 1983; 17(3):225-31. PubMed ID: 6877129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radio-frequency heating under ECG electrodes.
    DeRosa JF; Gadsby PD
    Med Instrum; 1979; 13(5):273-6. PubMed ID: 502924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher currents, greater risks: preventing patient burns at the return-electrode site during high-current electrosurgical procedures.
    ECRI
    Health Devices; 2005 Aug; 34(8):273-9. PubMed ID: 16255231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intended and stray radiofrequency electrical currents during resectoscopic surgery.
    Vilos GA; McCulloch S; Borg P; Zheng W; Denstedt J
    J Am Assoc Gynecol Laparosc; 2000 Feb; 7(1):55-63. PubMed ID: 10648740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated and experimental studies of temperature elevation around electrosurgical dispersive electrodes.
    Kim Y; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1984 Nov; 31(11):681-92. PubMed ID: 6500588
    [No Abstract]   [Full Text] [Related]  

  • 16. Numerical field calculation of patient return electrodes in electrosurgery.
    Raiser J; Golombeck MA; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():274-7. PubMed ID: 12451837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monopolar electrosurgical thermal management for minimizing tissue damage.
    Dodde RE; Gee JS; Geiger JD; Shih AJ
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):167-73. PubMed ID: 21947515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A device category economic model of electrosurgery technologies across procedure types: a U.S. hospital budget impact analysis.
    Ferko N; Wright GWJ; Syed I; Naoumtchik E; Tommaselli GA; Gangoli G
    J Med Econ; 2021; 24(1):524-535. PubMed ID: 33851557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrosurgery in otolaryngology-head and neck surgery: principles, advances, and complications.
    Smith TL; Smith JM
    Laryngoscope; 2001 May; 111(5):769-80. PubMed ID: 11359154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of human penile electrical resistance and implication on safety for electrosurgery of penis.
    Tsai VF; Chang HC; Liu SP; Kuo YC; Chen JH; Jaw FS; Hsieh JT
    J Sex Med; 2010 Aug; 7(8):2891-8. PubMed ID: 20524977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.