BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8275262)

  • 21. Temporal relationship between postural and focal components of a whole-body reaching movement: a study case of short-term adaptation in microgravity condition.
    Patron J; Stapley PJ; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P23-4. PubMed ID: 16231434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11.
    Hodgson JA; Riazansky SN; Goulet C; Badakva AM; Kozlovskaya IB; Recktenwald MR; McCall G; Roy RR; Fanton JW; Edgerton VR
    J Gravit Physiol; 2000 Jan; 7(1):S87. PubMed ID: 11543470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensorimotor reconditioning during and after spaceflight.
    Wood SJ; Loehr JA; Guilliams ME
    NeuroRehabilitation; 2011; 29(2):185-95. PubMed ID: 22027081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation of center of mass control under microgravity in a whole-body lifting task.
    Kingma I; Toussaint HM; Commissaris DA; Savelsbergh GJ
    Exp Brain Res; 1999 Mar; 125(1):35-42. PubMed ID: 10100974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How does microgravity affect the muscular and kinematic synergies in a complex movement?
    Casellato C; Tagliabue M; Pedrocchi A; Ferrigno G; Pozzo T
    J Gravit Physiol; 2007 Jul; 14(1):P93-4. PubMed ID: 18372715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight.
    Newman DJ; Jackson DK; Bloomberg JJ
    Exp Brain Res; 1997 Oct; 117(1):30-42. PubMed ID: 9386002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions.
    Wang Y; Zatsiorsky VM; Latash ML
    Clin Neurophysiol; 2006 Jan; 117(1):41-56. PubMed ID: 16364687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space.
    Hagio S; Ishihara A; Terada M; Tanabe H; Kibushi B; Higashibata A; Yamada S; Furukawa S; Mukai C; Ishioka N; Kouzaki M
    J Neurophysiol; 2022 May; 127(5):1230-1239. PubMed ID: 35353615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microgravity enhances the relative contribution of visually-induced motion sensation.
    Young LR; Shelhamer M
    Aviat Space Environ Med; 1990 Jun; 61(6):525-30. PubMed ID: 2369392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nature of sensorimotor adaptation to altered G-levels: evidence from mass discrimination.
    Ross HE; Schwartz E; Emmerson P
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A148-52. PubMed ID: 3675482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axial synergies during human upper trunk bending.
    Alexandrov A; Frolov A; Massion J
    Exp Brain Res; 1998 Jan; 118(2):210-20. PubMed ID: 9547090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EMG activity of three rat hindlimb muscles during microgravity and hypergravity phase of parabolic flight.
    Leterme D; Falempin M
    Aviat Space Environ Med; 1998 Nov; 69(11):1065-70. PubMed ID: 9819163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of phasic and tonic muscle synergies with reaching direction and speed.
    d'Avella A; Fernandez L; Portone A; Lacquaniti F
    J Neurophysiol; 2008 Sep; 100(3):1433-54. PubMed ID: 18596190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating voluntary unilateral knee flexion into balance corrections elicited by multi-directional perturbations to stance.
    Küng UM; Horlings CG; Honegger F; Allum JH
    Neuroscience; 2009 Sep; 163(1):466-81. PubMed ID: 19505537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is the regulation of the center of mass maintained during leg movement under microgravity conditions?
    Mouchnino L; Cincera M; Fabre JC; Assaiante C; Amblard B; Pedotti A; Massion J
    J Neurophysiol; 1996 Aug; 76(2):1212-23. PubMed ID: 8871231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Quantitative approach of postural asynergia in cerebellar diseases].
    Viallet F; Massion J; Bonnefoi-Kyriacou B; Aurenty R; Obadia A; Khalil R
    Rev Neurol (Paris); 1994; 150(1):55-60. PubMed ID: 7801042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.