These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 8275274)

  • 1. Effect of sway-referenced visual and somatosensory inputs on human head movement and postural patterns during stance.
    Di Fabio RP; Anderson JH
    J Vestib Res; 1993; 3(4):409-17. PubMed ID: 8275274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic neuropathy and surface sway-referencing disrupt somatosensory information for postural stability in stance.
    Horak FB; Dickstein R; Peterka RJ
    Somatosens Mot Res; 2002; 19(4):316-26. PubMed ID: 12590833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of diminished and conflicting sensory information on balance in patients with cerebellar deficits.
    Gatev P; Thomas S; Lou JS; Lim M; Hallett M
    Mov Disord; 1996 Nov; 11(6):654-64. PubMed ID: 8914091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling human upright posture: velocity information is more accurate than position or acceleration.
    Jeka J; Kiemel T; Creath R; Horak F; Peterka R
    J Neurophysiol; 2004 Oct; 92(4):2368-79. PubMed ID: 15140910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory organization of balance responses in children 3-6 years of age: a normative study with diagnostic implications.
    Foudriat BA; Di Fabio RP; Anderson JH
    Int J Pediatr Otorhinolaryngol; 1993 Oct; 27(3):255-71. PubMed ID: 8270364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EquiTest modification with shank and hip angle measurements: differences with age among normal subjects.
    Speers RA; Shepard NT; Kuo AD
    J Vestib Res; 1999; 9(6):435-44. PubMed ID: 10639028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destabilization of human balance control by static and dynamic head tilts.
    Paloski WH; Wood SJ; Feiveson AH; Black FO; Hwang EY; Reschke MF
    Gait Posture; 2006 Apr; 23(3):315-23. PubMed ID: 15961313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits.
    Wall C; Kentala E
    J Vestib Res; 2005; 15(5-6):313-25. PubMed ID: 16614476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in human posture control: sensory organization tests.
    Peterka RJ; Black FO
    J Vestib Res; 1990-1991; 1(1):73-85. PubMed ID: 1670139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic regulation of sensorimotor integration in human postural control.
    Peterka RJ; Loughlin PJ
    J Neurophysiol; 2004 Jan; 91(1):410-23. PubMed ID: 13679407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance sensory organization in children with profound hearing loss and cochlear implants.
    Suarez H; Angeli S; Suarez A; Rosales B; Carrera X; Alonso R
    Int J Pediatr Otorhinolaryngol; 2007 Apr; 71(4):629-37. PubMed ID: 17275927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of somatosensory feedback in postural control during standing.
    Fukuoka Y; Nagata T; Ishida A; Minamitani H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):145-53. PubMed ID: 11474967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects.
    Cappa P; Patanè F; Rossi S; Petrarca M; Castelli E; Berthoz A
    Gait Posture; 2008 Nov; 28(4):615-26. PubMed ID: 18539460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of dynamic visual environments on postural sway in the elderly.
    Borger LL; Whitney SL; Redfern MS; Furman JM
    J Vestib Res; 1999; 9(3):197-205. PubMed ID: 10436473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the posture control system under fixed and sway-referenced support conditions.
    Ishida A; Imai S; Fukuoka Y
    IEEE Trans Biomed Eng; 1997 May; 44(5):331-6. PubMed ID: 9125817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium during static and dynamic tasks in blind subjects: no evidence of cross-modal plasticity.
    Schmid M; Nardone A; De Nunzio AM; Schmid M; Schieppati M
    Brain; 2007 Aug; 130(Pt 8):2097-107. PubMed ID: 17611240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback.
    Hegeman J; Honegger F; Kupper M; Allum JH
    J Vestib Res; 2005; 15(2):109-17. PubMed ID: 15951624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of force platform measures for stance stability under varying sensory conditions.
    Hu MH; Hung YC; Huang YL; Peng CD; Shen SS
    Proc Natl Sci Counc Repub China B; 1996 Jul; 20(3):78-86. PubMed ID: 8956523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory inputs contribution to vestibulo-ocular reflex and postural response maintaining simultaneously body balance.
    Grigorova V; Stambolieva K; Ikonomov R
    Acta Physiol Pharmacol Bulg; 2001; 26(3):181-4. PubMed ID: 11695534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of immersion in virtual reality on postural control.
    Akizuki H; Uno A; Arai K; Morioka S; Ohyama S; Nishiike S; Tamura K; Takeda N
    Neurosci Lett; 2005 Apr; 379(1):23-6. PubMed ID: 15814192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.