These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8275353)

  • 61. Uptake and metabolism of albumin by rodent incisor enamel in vivo and postmortem: implications for control of mineralization by albumin.
    Robinson C; Brookes SJ; Kirkham J; Shore RC; Bonass WA
    Calcif Tissue Int; 1994 Dec; 55(6):467-72. PubMed ID: 7895186
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vitro albumin binding on apatite crystals from developing enamel.
    Menanteau J; Gregoire M; Daculsi G; Jans I
    Bone Miner; 1987 Nov; 3(2):137-41. PubMed ID: 3505196
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent uses of electron microscopy in the study of physico-chemical processes affecting the reactivity of synthetic and biological apatites.
    Featherstone JD; Nelson DG
    Scanning Microsc; 1989 Sep; 3(3):815-27; discussion 827-8. PubMed ID: 2617263
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Occurrence of amorphous and crystalline mineral deposits at the epithelial-mesenchymal interface of incisors in the calcium-loaded rat: implication of novel calcium binding domains.
    Takano Y; Hanaizumi Y; Ohshima H
    Anat Rec; 1996 Jun; 245(2):174-85. PubMed ID: 8769662
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The mineral composition and enamel ultrastructure of hypocalcified amelogenesis imperfecta.
    Wright JT; Duggal MS; Robinson C; Kirkham J; Shore R
    J Craniofac Genet Dev Biol; 1993; 13(2):117-26. PubMed ID: 8325967
    [TBL] [Abstract][Full Text] [Related]  

  • 66. THE STRUCTURE AND ORGANIZATION OF, AND THE RELATIONSHIP BETWEEN THE ORGANIC MATRIX AND THE INORGANIC CRYSTALS OF EMBRYONIC BOVINE ENAMEL.
    TRAVIS DF; GLIMCHER MJ
    J Cell Biol; 1964 Dec; 23(3):447-97. PubMed ID: 14245432
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Competitive adsorption of magnesium and calcium ions onto synthetic and biological apatites.
    Aoba T; Moreno EC; Shimoda S
    Calcif Tissue Int; 1992 Aug; 51(2):143-50. PubMed ID: 1422954
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Observations on the structural features and characteristics of biological apatite crystals. 1. Observation on the shape and arrangement of the cross sectioned enamel crystals.
    Ichijo T; Yamashita Y; Terashima T
    Dent Jpn (Tokyo); 1990; 27(1):11-6. PubMed ID: 2099277
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantitative analyses of the biomineralization of different hard tissues.
    Arnold S; Plate U; Wiesmann HP; Stratmann U; Kohl H; Höhling HJ
    J Microsc; 2001 Jun; 202(Pt 3):488-94. PubMed ID: 11422671
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle.
    Höhling HJ; Arnold S; Barckhaus RH; Plate U; Wiesmann HP
    Connect Tissue Res; 1995; 33(1-3):171-8. PubMed ID: 7554950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ameloblastic secretion and calcification of the enamel layer in shark teeth.
    Kemp NE
    J Morphol; 1985 May; 184(2):215-30. PubMed ID: 3989869
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth.
    Ortiz-Ruiz AJ; Teruel-Fernández JD; Alcolea-Rubio LA; Hernández-Fernández A; Martínez-Beneyto Y; Gispert-Guirado F
    Ann Anat; 2018 Jul; 218():7-17. PubMed ID: 29604387
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Observations on structural features and characteristics of biological apatite crystals. 6. Observation on lattice imperfection of human tooth and bone crystals. I.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Sep; 40(3):147-65. PubMed ID: 8403108
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface chemistry of enamel apatite during maturation in relation to pH: implications for protein removal and crystal growth.
    Robinson C; Connell S; Brookes SJ; Kirkham J; Shore RC; Smith DA
    Arch Oral Biol; 2005 Feb; 50(2):267-70. PubMed ID: 15721160
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dose-dependent modulation of octacalcium phosphate crystal habit by amelogenins.
    Wen HB; Moradian-Oldak J; Fincham AG
    J Dent Res; 2000 Nov; 79(11):1902-6. PubMed ID: 11145363
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite.
    Grimes V; Pellegrini M
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):375-90. PubMed ID: 23280969
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites.
    Lee DD; LeGeros RZ
    Calcif Tissue Int; 1985 Dec; 37(6):651-8. PubMed ID: 3937591
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of pH on the structural evolution of accelerated biomimetic apatite.
    Chou YF; Chiou WA; Xu Y; Dunn JC; Wu BM
    Biomaterials; 2004 Oct; 25(22):5323-31. PubMed ID: 15110483
    [TBL] [Abstract][Full Text] [Related]  

  • 80. EPR properties of synthetic apatites, deorganified dentine, and enamel.
    Kenner GH; Haskell EH; Hayes RB; Baig A; Higuchi WI
    Calcif Tissue Int; 1998 May; 62(5):443-6. PubMed ID: 9541522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.