BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 8275369)

  • 1. Role of trabecular morphology in the etiology of age-related vertebral fractures.
    Snyder BD; Piazza S; Edwards WT; Hayes WC
    Calcif Tissue Int; 1993; 53 Suppl 1():S14-22. PubMed ID: 8275369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebral osteoporosis and trabecular bone quality.
    McDonnell P; McHugh PE; O'Mahoney D
    Ann Biomed Eng; 2007 Feb; 35(2):170-89. PubMed ID: 17171508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of bone mineral density after percutaneous kyphoplasty in fresh osteoporotic vertebral body fractures and adjacent vertebrae along with sagittal spine alignment.
    Korovessis P; Zacharatos S; Repantis T; Michael A; Karachalios D
    J Spinal Disord Tech; 2008 Jun; 21(4):293-8. PubMed ID: 18525491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis.
    Legrand E; Chappard D; Pascaretti C; Duquenne M; Krebs S; Rohmer V; Basle MF; Audran M
    J Bone Miner Res; 2000 Jan; 15(1):13-9. PubMed ID: 10646109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss.
    Duan Y; Turner CH; Kim BT; Seeman E
    J Bone Miner Res; 2001 Dec; 16(12):2267-75. PubMed ID: 11760841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranio-caudal asymmetries in trabecular architecture reflect vertebral fracture patterns.
    Yang G; Battié MC; Boyd SK; Videman T; Wang Y
    Bone; 2017 Feb; 95():102-107. PubMed ID: 27876503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis.
    Bergot C; Laval-Jeantet AM; Prêteux F; Meunier A
    Calcif Tissue Int; 1988 Sep; 43(3):143-9. PubMed ID: 3141014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-level failure accumulation in vertebral cancellous bone: a theoretical model.
    Slomka N; Diamant I; Gefen A
    Technol Health Care; 2008; 16(1):47-60. PubMed ID: 18334787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.
    Thomsen JS; Niklassen AS; Ebbesen EN; Brüel A
    Bone; 2013 Nov; 57(1):47-55. PubMed ID: 23899636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular bone structure in lumbosacral transitional vertebrae: distribution and densities across sagittal vertebral body segments.
    Mahato NK
    Spine J; 2013 Aug; 13(8):932-7. PubMed ID: 23582426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the cortical shell of vertebrae to mechanical behaviour of the lumbar vertebrae with implications for predicting fracture risk.
    Andresen R; Werner HJ; Schober HC
    Br J Radiol; 1998 Jul; 71(847):759-65. PubMed ID: 9771387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.
    Silva MJ; Gibson LJ
    Bone; 1997 Aug; 21(2):191-9. PubMed ID: 9267695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenesis of vertebral deformities in involutional osteoporosis. Age-related, three-dimensional trabecular structure.
    Oda K; Shibayama Y; Abe M; Onomura T
    Spine (Phila Pa 1976); 1998 May; 23(9):1050-5, discussion 1056. PubMed ID: 9589545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture and vertebral fracture.
    Recker RR
    Calcif Tissue Int; 1993; 53 Suppl 1():S139-42. PubMed ID: 8275368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens.
    Amling M; Pösl M; Ritzel H; Hahn M; Vogel M; Wening VJ; Delling G
    Arch Orthop Trauma Surg; 1996; 115(5):262-9. PubMed ID: 8836458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Trabecular bone microarchitecture and male osteoporosis].
    Legrand E; Chappard D; Pascaretti C; Duquenne M; Rohmer V; Basle MF; Audran M
    Morphologie; 1999 Jun; 83(261):35-40. PubMed ID: 10546234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural determinants of vertebral fracture risk.
    Melton LJ; Riggs BL; Keaveny TM; Achenbach SJ; Hoffmann PF; Camp JJ; Rouleau PA; Bouxsein ML; Amin S; Atkinson EJ; Robb RA; Khosla S
    J Bone Miner Res; 2007 Dec; 22(12):1885-92. PubMed ID: 17680721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent deficits in bone mass of the vertebral body and posterior processes in women with vertebral fractures: implications regarding the pathogenesis of spinal osteoporosis.
    Seeman E; Formica C; Mosekilde L
    J Bone Miner Res; 1995 Dec; 10(12):2005-10. PubMed ID: 8619382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body.
    Banse X; Devogelaer JP; Munting E; Delloye C; Cornu O; Grynpas M
    Bone; 2001 May; 28(5):563-71. PubMed ID: 11344057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.