These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 8275522)

  • 1. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes.
    Bers DM; Bassani JW; Bassani RA
    Cardiovasc Res; 1993 Oct; 27(10):1772-7. PubMed ID: 8275522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1992; 453():591-608. PubMed ID: 1464847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1993 Jan; 460():603-21. PubMed ID: 8387590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes.
    Negretti N; O'Neill SC; Eisner DA
    Cardiovasc Res; 1993 Oct; 27(10):1826-30. PubMed ID: 8275530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells.
    Bassani JW; Qi M; Samarel AM; Bers DM
    Circ Res; 1994 May; 74(5):991-7. PubMed ID: 8156646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects.
    Li L; Chu G; Kranias EG; Bers DM
    Am J Physiol; 1998 Apr; 274(4):H1335-47. PubMed ID: 9575939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na-Ca exchange is required for rest-decay but not for rest-potentiation of twitches in rabbit and rat ventricular myocytes.
    Bassani RA; Bers DM
    J Mol Cell Cardiol; 1994 Oct; 26(10):1335-47. PubMed ID: 7869394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle.
    Bers DM; Bassani JW; Bassani RA
    Ann N Y Acad Sci; 1996 Apr; 779():430-42. PubMed ID: 8659859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation of rabbit ventricular muscle by Na-Ca exchange and sarcoplasmic reticulum calcium pump. Ryanodine and voltage sensitivity.
    Bers DM; Bridge JH
    Circ Res; 1989 Aug; 65(2):334-42. PubMed ID: 2546695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+-Ca2+ exchanger.
    Terracciano CM; Souza AI; Philipson KD; MacLeod KT
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):651-67. PubMed ID: 9769411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase.
    Mackiewicz U; Lewartowski B
    J Physiol Pharmacol; 2006 Mar; 57(1):3-15. PubMed ID: 16601311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Sep; 469():583-99. PubMed ID: 8271217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial calcium compartmentation and contractile control.
    Langer GA
    J Physiol Pharmacol; 1991 Mar; 42(1):29-6. PubMed ID: 1657253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of sarcoplasmic reticulum and Na-Ca exchange in the Ca2+ extrusion from the resting myocytes of guinea-pig heart: comparison with rat.
    Wolska BM; Lewartowski B
    J Mol Cell Cardiol; 1993 Jan; 25(1):75-91. PubMed ID: 8441183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to estimate mitochondrial Ca2+ uptake in intact cardiac myocytes.
    Bassani JW; Bassani RA; Bers DM
    Braz J Med Biol Res; 1996 Dec; 29(12):1699-707. PubMed ID: 9222435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the sarcoplasmic reticulum Ca2+ pump with thapsigargin to estimate the contribution of Na+-Ca2+ exchange to ventricular myocyte relaxation.
    Bassani RA; Bassani JW
    Braz J Med Biol Res; 2003 Dec; 36(12):1717-23. PubMed ID: 14666257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid cooling contractures as an index of sarcoplasmic reticulum calcium content in rabbit ventricular myocytes.
    Hryshko LV; Stiffel V; Bers DM
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1369-77. PubMed ID: 2589492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.