These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8276263)

  • 1. Molecular biology of flower development in Antirrhinum majus (snapdragon).
    Saedler H; Huijser P
    Gene; 1993 Dec; 135(1-2):239-43. PubMed ID: 8276263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.
    Egea-Cortines M; Saedler H; Sommer H
    EMBO J; 1999 Oct; 18(19):5370-9. PubMed ID: 10508169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.
    Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z
    Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.
    Carpenter R; Coen ES
    Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.
    Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MADS-box genes are involved in floral development and evolution.
    Saedler H; Becker A; Winter KU; Kirchner C; Theissen G
    Acta Biochim Pol; 2001; 48(2):351-8. PubMed ID: 11732606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.
    Motte P; Saedler H; Schwarz-Sommer Z
    Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fimbriata controls flower development by mediating between meristem and organ identity genes.
    Simon R; Carpenter R; Doyle S; Coen E
    Cell; 1994 Jul; 78(1):99-107. PubMed ID: 8033217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.
    Davies B; Di Rosa A; Eneva T; Saedler H; Sommer H
    Plant J; 1996 Oct; 10(4):663-77. PubMed ID: 8893543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae).
    Yu D; Kotilainen M; Pöllänen E; Mehto M; Elomaa P; Helariutta Y; Albert VA; Teeri TH
    Plant J; 1999 Jan; 17(1):51-62. PubMed ID: 10069067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.
    Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G
    Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion.
    Hardenack S; Ye D; Saedler H; Grant S
    Plant Cell; 1994 Dec; 6(12):1775-87. PubMed ID: 7866023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA.
    Klein J; Saedler H; Huijser P
    Mol Gen Genet; 1996 Jan; 250(1):7-16. PubMed ID: 8569690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS.
    Bey M; Stüber K; Fellenberg K; Schwarz-Sommer Z; Sommer H; Saedler H; Zachgo S
    Plant Cell; 2004 Dec; 16(12):3197-215. PubMed ID: 15539471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.
    Melzer R; Wang YQ; Theissen G
    Semin Cell Dev Biol; 2010 Feb; 21(1):118-28. PubMed ID: 19944177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetics of flower development: from floral induction to ovule morphogenesis.
    Weigel D
    Annu Rev Genet; 1995; 29():19-39. PubMed ID: 8825467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.