BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8276771)

  • 1. Hemolytic properties under hydrostatic pressure of neuraminidase- or protease-treated human erythrocytes.
    Yamaguchi T; Matsumoto M; Kimoto E
    J Biochem; 1993 Oct; 114(4):576-81. PubMed ID: 8276771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by cross-linking of membrane proteins.
    Kitajima H; Yamaguchi T; Kimoto E
    J Biochem; 1990 Dec; 108(6):1057-62. PubMed ID: 2150965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of modification of the membranes of intact erythrocytes on the anti-haemolytic action of chlorpromazine.
    Born GV; Housley GM
    Br J Pharmacol; 1983 Jun; 79(2):481-7. PubMed ID: 6652340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of membrane proteins in monosodium urate crystal-membrane interactions. I. Effect of pretreatment of erythrocyte membranes with glutaraldehyde and neuraminidase.
    Burt HM; Jackson JK; Kim KJ
    J Rheumatol; 1990 Oct; 17(10):1353-8. PubMed ID: 2123933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of protein 4.1-rich vesicles from diamide-treated erythrocytes under hydrostatic pressure.
    Yamaguchi T; Saeki T; Kimoto E
    Biochim Biophys Acta; 1993 Apr; 1147(1):1-5. PubMed ID: 8466921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cross-linking of membrane proteins on vesiculation induced by dimyristoylphosphatidylcholine in human erythrocytes.
    Yamaguchi T; Yamada S; Kimoto E
    J Biochem; 1994 Apr; 115(4):659-63. PubMed ID: 8089080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The importance of N-acetylneuraminic acid and of its interaction with Ca++ in the stability of the erythrocytic membrane].
    Bruno C; Cuppini R
    Boll Soc Ital Biol Sper; 1981 Nov; 57(21):2144-50. PubMed ID: 6802146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesiculation induced by hydrostatic pressure in human erythrocytes.
    Yamaguchi T; Kajikawa T; Kimoto E
    J Biochem; 1991 Sep; 110(3):355-9. PubMed ID: 1769962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trifluoperazine inhibits Sendai virus-induced hemolysis.
    MacDonald RI
    Biochim Biophys Acta; 1986 Apr; 856(2):337-47. PubMed ID: 3006773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes.
    Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP
    Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure-induced hemolysis in papain-digested human erythrocytes is suppressed by cross-linking of band 3 via anti-band 3 antibodies.
    Yamaguchi T; Satoh I; Ariyoshi N; Terada S
    J Biochem; 2005 Apr; 137(4):535-41. PubMed ID: 15858178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of trifluoperazine and membrane-bound sialic acid on 45Ca2+ uptake into erythrocytes.
    Günther T; Höllriegl V; Fehlinger R
    J Trace Elem Electrolytes Health Dis; 1988 Mar; 2(1):15-8. PubMed ID: 2980786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and pH on hemoglobin release from hydrostatic pressure-treated erythrocytes.
    Yamaguchi T; Kawamura H; Kimoto E; Tanaka M
    J Biochem; 1989 Dec; 106(6):1080-5. PubMed ID: 2560779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assay of malaria parasite invasion into human erythrocytes. The effects of chemical and enzymatic modification of erythrocyte membrane components.
    Breuer WV; Ginsburg H; Cabantchik ZI
    Biochim Biophys Acta; 1983 Jan; 755(2):263-71. PubMed ID: 6338931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loxosceles intermedia spider envenomation induces activation of an endogenous metalloproteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis.
    Tambourgi DV; Morgan BP; de Andrade RM; Magnoli FC; van Den Berg CW
    Blood; 2000 Jan; 95(2):683-91. PubMed ID: 10627480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.
    Brody AR; George G; Hill LH
    Lab Invest; 1983 Oct; 49(4):468-75. PubMed ID: 6312192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled human RBC modifications affecting the binding of cationic liposomes.
    Di Giulio A; Oratore A; Tozzi-Ciancarelli MG; Crifo' C; Finazzi-Agro' A
    Biochem Int; 1988 Jun; 16(6):999-1007. PubMed ID: 3178866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of enzymes on the attachment of influenza and encephalomyocarditis viruses to erythrocytes.
    Burness AT; Pardoe IU
    J Gen Virol; 1981 Aug; 55(Pt 2):275-88. PubMed ID: 6270264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rate of osmotic hemolysis: a relationship with membrane bilayer fluidity.
    Araki K; Rifkind JM
    Biochim Biophys Acta; 1981 Jul; 645(1):81-90. PubMed ID: 6266477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and sedimentation of mixtures of erythrocytes with different properties.
    Suzuki Y; Tateishi N; Cicha I; Maeda N
    Clin Hemorheol Microcirc; 2001; 25(3-4):105-17. PubMed ID: 11847413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.