BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8277223)

  • 1. The effect of tri-iodothyronine on the membrane potential and intracellular sodium and potassium activities of rat soleus and extensor digitorum longus muscles.
    MacDermott M
    J Endocrinol; 1993 Sep; 138(3):503-7. PubMed ID: 8277223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thyroid hormone on Na+-K+ transport in resting and stimulated rat skeletal muscle.
    Everts ME; Clausen T
    Am J Physiol; 1988 Nov; 255(5 Pt 1):E604-12. PubMed ID: 2847536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular sodium and potassium activities of skeletal muscle fibres of hypothyroid rats.
    MacDermott M
    Exp Physiol; 1992 Jul; 77(4):649-52. PubMed ID: 1326291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein turnover in different types of skeletal muscle during experimental hyperthyroidism in rats.
    Angerås U; Hasselgren PO
    Acta Endocrinol (Copenh); 1985 May; 109(1):90-5. PubMed ID: 4003000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression.
    Weinstein SP; O'Boyle E; Haber RS
    Diabetes; 1994 Oct; 43(10):1185-9. PubMed ID: 7926286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninactivating tension in rat skeletal muscle. Effects of thyroid hormone.
    Chua M; Dulhunty AF
    J Gen Physiol; 1989 Jul; 94(1):183-203. PubMed ID: 2809571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of thyroid hormone on T-tubules and terminal cisternae in rat muscles: an electrophysiological and morphometric analysis.
    Dulhunty AF; Gage PW; Lamb GD
    J Muscle Res Cell Motil; 1986 Jun; 7(3):225-36. PubMed ID: 3734053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postdenervation changes of intracellular potassium and sodium measured by ion selective microelectrodes in rat soleus and extensor digitorum longus muscle fibres.
    Shabunova I; Vyskocil F
    Pflugers Arch; 1982 Aug; 394(2):161-4. PubMed ID: 7122222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of denervation and ouabain on the response of the resting membrane potential of rat skeletal muscle to potassium.
    Wareham AC
    Pflugers Arch; 1978 Mar; 373(3):225-8. PubMed ID: 567319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles.
    Dulhunty AF; Gage PW
    J Physiol; 1985 Jan; 358():75-89. PubMed ID: 3981474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of deoxycorticosterone acetate on muscle electrolytes, resting potential and mitochondria in rats.
    Jiang MM; Zhu PH; Huang SK; Yu ZH
    Sci China B; 1990 Sep; 33(9):1052-9. PubMed ID: 2242221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium contractures and asymmetric charge movement in extensor digitorum longus and soleus muscles from thyrotoxic rats.
    Dulhunty AF; Gage PW; Lamb GD
    J Muscle Res Cell Motil; 1987 Aug; 8(4):289-96. PubMed ID: 3654955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery.
    Juel C
    Pflugers Arch; 1986 May; 406(5):458-63. PubMed ID: 3714446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fasting, refeeding, and fasting with T3 administration on Na-K,ATPase in rat skeletal muscle.
    Matsumura M; Kuzuya N; Kawakami Y; Yamashita K
    Metabolism; 1992 Sep; 41(9):995-9. PubMed ID: 1325595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats.
    Dulhunty AF; Gage PW
    J Physiol; 1983 Aug; 341():213-31. PubMed ID: 6620180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of IGF-I infusion on growth and muscle Na(+)-K+ pump concentration in K(+)-deficient rats.
    Dørup I; Flyvbjerg A
    Am J Physiol; 1993 May; 264(5 Pt 1):E810-5. PubMed ID: 8388640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular potassium and membrane potential in rat muscles during malnutrition and subsequent refeeding.
    Pichard C; Hoshino E; Allard JP; Charlton MP; Atwood HL; Jeejeebhoy KN
    Am J Clin Nutr; 1991 Sep; 54(3):489-98. PubMed ID: 1877504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.