These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 8277520)
1. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels. Horowitz SB; Finley BL J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520 [TBL] [Abstract][Full Text] [Related]
2. Review of the allergic contact dermatitis hazard posed by chromium-contaminated soil: identifying a "safe" concentration. Paustenbach DJ; Sheehan PJ; Paull JM; Wisser LM; Finley BL J Toxicol Environ Health; 1992 Sep; 37(1):177-207. PubMed ID: 1522610 [TBL] [Abstract][Full Text] [Related]
3. The extractability of Cr(VI) from contaminated soil in synthetic sweat. Wainman T; Hazen RE; Lioy PJ J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927 [TBL] [Abstract][Full Text] [Related]
5. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ; Cirmo A J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158 [TBL] [Abstract][Full Text] [Related]
7. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835 [TBL] [Abstract][Full Text] [Related]
8. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM; Benson CH; Edil TB Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949 [TBL] [Abstract][Full Text] [Related]
9. The health hazards posed by chromium-contaminated soils in residential and industrial areas: conclusions of an expert panel. Paustenbach DJ; Rinehart WE; Sheehan PJ Regul Toxicol Pharmacol; 1991 Apr; 13(2):195-222. PubMed ID: 1852930 [TBL] [Abstract][Full Text] [Related]
10. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils. Paustenbach DJ; Meyer DM; Sheehan PJ; Lau V Toxicol Ind Health; 1991 May; 7(3):159-96. PubMed ID: 1949057 [TBL] [Abstract][Full Text] [Related]
11. A new method for the treatment of chromite ore processing residues. Wang T; He M; Pan Q J Hazard Mater; 2007 Oct; 149(2):440-4. PubMed ID: 17482759 [TBL] [Abstract][Full Text] [Related]
12. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Hillier S; Roe MJ; Geelhoed JS; Fraser AR; Farmer JG; Paterson E Sci Total Environ; 2003 Jun; 308(1-3):195-210. PubMed ID: 12738213 [TBL] [Abstract][Full Text] [Related]
13. Leaching mechanisms of Cr(VI) from chromite ore processing residue. Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466 [TBL] [Abstract][Full Text] [Related]
14. Remediation of chromite ore processing residue by pyrolysis process with sewage sludge. Zhang D; Kong H; Wu D; He S; Hu Z; Hu X Bioresour Technol; 2009 Jun; 100(11):2874-7. PubMed ID: 19217773 [TBL] [Abstract][Full Text] [Related]
15. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700 [TBL] [Abstract][Full Text] [Related]
16. Systemic uptake of chromium in human volunteers following dermal contact with hexavalent chromium (22 mg/L). Corbett GE; Finley BL; Paustenbach DJ; Kerger BD J Expo Anal Environ Epidemiol; 1997; 7(2):179-89. PubMed ID: 9185011 [TBL] [Abstract][Full Text] [Related]
17. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Jagupilla SC; Wazne M; Moon DH Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Cao J; Zhang WX J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. Yu S; Du J; Luo T; Huang Y; Jing C J Hazard Mater; 2012 Mar; 209-210():250-5. PubMed ID: 22309656 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]