These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8277748)

  • 1. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats.
    Bobbioni-Harsch E; Rohner-Jeanrenaud F; Koudelka M; de Rooij N; Jeanrenaud B
    J Biomed Eng; 1993 Nov; 15(6):457-63. PubMed ID: 8277748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
    Updike SJ; Shults MC; Gilligan BJ; Rhodes RK
    Diabetes Care; 2000 Feb; 23(2):208-14. PubMed ID: 10868833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of subcutaneously implanted glucose sensors: a review.
    Gerritsen M; Jansen JA; Kros A; Nolte RJ; Lutterman JA
    J Invest Surg; 1998; 11(3):163-74. PubMed ID: 9743484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for testing long-term transcutaneous amperometric glucose sensors.
    Long N; Yu B; Moussy Y; Moussy F
    Diabetes Technol Ther; 2005 Dec; 7(6):927-36. PubMed ID: 16386099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats.
    Woderer S; Henninger N; Garthe CD; Kloetzer HM; Hajnsek M; Kamecke U; Gretz N; Kraenzlin B; Pill J
    Anal Chim Acta; 2007 Jan; 581(1):7-12. PubMed ID: 17386418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological preparation for studying the response of subcutaneously implanted glucose and oxygen sensors.
    Ertefai S; Gough DA
    J Biomed Eng; 1989 Sep; 11(5):362-8. PubMed ID: 2677523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for calibrating a subcutaneous glucose sensor.
    Velho G; Froguel P; Thevenot DR; Reach G
    Biomed Biochim Acta; 1989; 48(11-12):957-64. PubMed ID: 2700068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable continuous glucose sensors.
    Renard E
    Curr Diabetes Rev; 2008 Aug; 4(3):169-74. PubMed ID: 18690897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of chronically implanted subcutaneous glucose sensors in dogs: the effect of surrounding fluid masses.
    Ward WK; Troupe JE
    ASAIO J; 1999; 45(6):555-61. PubMed ID: 10593686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue.
    Moatti-Sirat D; Capron F; Poitout V; Reach G; Bindra DS; Zhang Y; Wilson GS; Thévenot DR
    Diabetologia; 1992 Mar; 35(3):224-30. PubMed ID: 1373393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm.
    Aussedat B; Thomé-Duret V; Reach G; Lemmonier F; Klein JC; Hu Y; Wilson GS
    Biosens Bioelectron; 1997; 12(11):1061-71. PubMed ID: 9451795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model.
    Gilligan BJ; Shults MC; Rhodes RK; Updike SJ
    Diabetes Care; 1994 Aug; 17(8):882-7. PubMed ID: 7956636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ calibration of implanted electrochemical glucose sensors.
    von Woedtke T; Rebrin K; Fischer U; Abel P; Wilke W; Vogt L; Albrecht G
    Biomed Biochim Acta; 1989; 48(11-12):943-52. PubMed ID: 2636839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implanted electrochemical glucose sensors for the management of diabetes.
    Heller A
    Annu Rev Biomed Eng; 1999; 1():153-75. PubMed ID: 11701486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.