These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 8277748)
41. An investigation of long-term performance of minimally invasive glucose biosensors. Yu B; Ju Y; West L; Moussy Y; Moussy F Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797 [TBL] [Abstract][Full Text] [Related]
42. Statistics for critical clinical decision making based on readings of pairs of implanted sensors. Schmidtke DW; Pishko MV; Quinn CP; Heller A Anal Chem; 1996 Sep; 68(17):2845-9. PubMed ID: 8794921 [TBL] [Abstract][Full Text] [Related]
43. The GOD-H2O2-electrode as an approach to implantable glucose sensors. Abel P; Fischer U; Brunstein E; Ertle R Horm Metab Res Suppl; 1988; 20():26-9. PubMed ID: 3248787 [TBL] [Abstract][Full Text] [Related]
44. Hypoglycemia warning signal and glucose sensors: requirements and concepts. Heise T; Koschinsky T; Heinemann L; Lodwig V; Diabetes Technol Ther; 2003; 5(4):563-71. PubMed ID: 14511411 [TBL] [Abstract][Full Text] [Related]
45. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Choleau C; Klein JC; Reach G; Aussedat B; Demaria-Pesce V; Wilson GS; Gifford R; Ward WK Biosens Bioelectron; 2002 Aug; 17(8):647-54. PubMed ID: 12052350 [TBL] [Abstract][Full Text] [Related]
46. The continuous glucose monitoring sensor in neonatal intensive care. Beardsall K; Ogilvy-Stuart AL; Ahluwalia J; Thompson M; Dunger DB Arch Dis Child Fetal Neonatal Ed; 2005 Jul; 90(4):F307-10. PubMed ID: 16036889 [TBL] [Abstract][Full Text] [Related]
47. In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode. Jeong RA; Hwang JY; Joo S; Chung TD; Park S; Kang SK; Lee WY; Kim HC Biosens Bioelectron; 2003 Dec; 19(4):313-9. PubMed ID: 14615088 [TBL] [Abstract][Full Text] [Related]
48. In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. Velho G; Froguel P; Sternberg R; Thevenot DR; Reach G Diabetes; 1989 Feb; 38(2):164-71. PubMed ID: 2644139 [TBL] [Abstract][Full Text] [Related]
49. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Johnson KW; Mastrototaro JJ; Howey DC; Brunelle RL; Burden-Brady PL; Bryan NA; Andrew CC; Rowe HM; Allen DJ; Noffke BW Biosens Bioelectron; 1992; 7(10):709-14. PubMed ID: 1292518 [TBL] [Abstract][Full Text] [Related]
50. Use of the continuous glucose monitoring system in Goettingen Minipigs, with a special focus on the evaluation of insulin-dependent diabetes. Strauss A; Tiurbe C; Chodnevskaja I; Thiede A; Timm S; Ulrichs K; Moskalenko V Transplant Proc; 2008 Mar; 40(2):536-9. PubMed ID: 18374123 [TBL] [Abstract][Full Text] [Related]
51. Mediation of in vivo glucose sensor inflammatory response via nitric oxide release. Gifford R; Batchelor MM; Lee Y; Gokulrangan G; Meyerhoff ME; Wilson GS J Biomed Mater Res A; 2005 Dec; 75(4):755-66. PubMed ID: 16138325 [TBL] [Abstract][Full Text] [Related]
52. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor. Chen T; Schmidtke DW; Heller A Clin Chem Lab Med; 2002 Aug; 40(8):786-9. PubMed ID: 12392305 [TBL] [Abstract][Full Text] [Related]
53. Long-Term Home Study on Nocturnal Hypoglycemic Alarms Using a New Fully Implantable Continuous Glucose Monitoring System in Type 1 Diabetes. Wang X; Ioacara S; DeHennis A Diabetes Technol Ther; 2015 Nov; 17(11):780-6. PubMed ID: 26177299 [TBL] [Abstract][Full Text] [Related]
54. The use of two continuous glucose sensors during and after surgery. Vriesendorp TM; DeVries JH; Holleman F; Dzoljic M; Hoekstra JB Diabetes Technol Ther; 2005 Apr; 7(2):315-22. PubMed ID: 15857234 [TBL] [Abstract][Full Text] [Related]
55. A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Fang L; Liang B; Yang G; Hu Y; Zhu Q; Ye X Biosens Bioelectron; 2017 Nov; 97():196-202. PubMed ID: 28599179 [TBL] [Abstract][Full Text] [Related]
56. Fully Implantable Arterial Blood Glucose Device for Metabolic Research Applications in Rats for Two Months. Brockway R; Tiesma S; Bogie H; White K; Fine M; O'Farrell L; Michael M; Cox A; Coskun T J Diabetes Sci Technol; 2015 Jul; 9(4):771-81. PubMed ID: 26021562 [TBL] [Abstract][Full Text] [Related]
57. Local release of masitinib alters in vivo implantable continuous glucose sensor performance. Avula M; Jones D; Rao AN; McClain D; McGill LD; Grainger DW; Solzbacher F Biosens Bioelectron; 2016 Mar; 77():149-56. PubMed ID: 26402593 [TBL] [Abstract][Full Text] [Related]
58. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Poitout V; Moatti-Sirat D; Reach G; Zhang Y; Wilson GS; Lemonnier F; Klein JC Diabetologia; 1993 Jul; 36(7):658-63. PubMed ID: 8359584 [TBL] [Abstract][Full Text] [Related]
59. Continuous glucose monitoring (CGM) in very low birth weight newborns needing parenteral nutrition: validation and glycemic percentiles. Perri A; Giordano L; Corsello M; Priolo F; Vento G; Zecca E; Tiberi E Ital J Pediatr; 2018 Aug; 44(1):99. PubMed ID: 30134937 [TBL] [Abstract][Full Text] [Related]