These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8277756)

  • 1. Validation of an automated method of three-dimensional finite element modelling of bone.
    Keyak JH; Fourkas MG; Meagher JM; Skinner HB
    J Biomed Eng; 1993 Nov; 15(6):505-9. PubMed ID: 8277756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element modelling of bone: effects of element size.
    Keyak JH; Skinner HB
    J Biomed Eng; 1992 Nov; 14(6):483-9. PubMed ID: 1434570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and experimental validation of a three-dimensional finite element model of the human scapula.
    Gupta S; van der Helm FC; Sterk JC; van Keulen F; Kaptein BL
    Proc Inst Mech Eng H; 2004; 218(2):127-42. PubMed ID: 15116900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of multiple subject-specific finite element models of unicompartmental knee replacement.
    Tuncer M; Cobb JP; Hansen UN; Amis AA
    Med Eng Phys; 2013 Oct; 35(10):1457-64. PubMed ID: 23647863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models].
    Schmitt J; Lengsfeld M; Alter P; Leppek R
    Biomed Tech (Berl); 1995 Jun; 40(6):175-81. PubMed ID: 7632871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can CT image deblurring improve finite element predictions at the proximal femur?
    Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F
    J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verified and validated finite element analyses of humeri.
    Dahan G; Trabelsi N; Safran O; Yosibash Z
    J Biomech; 2016 May; 49(7):1094-1102. PubMed ID: 26972763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence.
    Marks LW; Gardner TN
    J Biomed Eng; 1993 Nov; 15(6):474-6. PubMed ID: 8277751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties.
    Couteau B; Hobatho MC; Darmana R; Brignola JC; Arlaud JY
    J Biomech; 1998 Apr; 31(4):383-6. PubMed ID: 9672093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.