These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8277831)

  • 1. Different resistance of mammalian red blood cells to hemolysis by bile salts.
    Salvioli G; Gaetti E; Panini R; Lugli R; Pradelli JM
    Lipids; 1993 Nov; 28(11):999-1003. PubMed ID: 8277831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties.
    Coleman R; Iqbal S; Godfrey PP; Billington D
    Biochem J; 1979 Jan; 178(1):201-8. PubMed ID: 435277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of bile salt-induced hemolysis.
    Mrówczyńska L; Bielawski J
    Cell Mol Biol Lett; 2001; 6(4):881-95. PubMed ID: 11753435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane fluidity and bile salt damage.
    Lowe PJ; Coleman R
    Biochim Biophys Acta; 1981 Jan; 640(1):55-65. PubMed ID: 7213693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium enhances the hemolytic action of bile salts.
    Child P; Rafter J
    Biochim Biophys Acta; 1986 Mar; 855(3):357-64. PubMed ID: 3081029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile salts induce calcium uptake in vitro by human erythrocytes.
    Oelberg DG; Dubinsky WP; Sackman JW; Wang LB; Adcock EW; Lester R
    Hepatology; 1987; 7(2):245-52. PubMed ID: 3557303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane cholesterol content of cholesterol/phospholipid vesicles determines the susceptibility to both damage and protection by bile salts: implications for bile physiology.
    van de Heijning BJ; van den Broek AM; van Berge-Henegouwen GP
    Eur J Gastroenterol Hepatol; 1997 May; 9(5):473-9. PubMed ID: 9187880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lecithin protects against plasma membrane disruption by bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1998 Aug; 78(2):131-6. PubMed ID: 9733630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between sphingomyelin and the membrane stability of mammalian erythrocytes.
    Yamaguchi T; Hirakawa R; Ochiai H
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 265():110833. PubMed ID: 36738823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoglycosides induce fragility of human red cell membrane: an in vitro study.
    Alnakshbandi AA
    Indian J Pharmacol; 2015; 47(1):114-6. PubMed ID: 25821323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of phospholipids from erythrocyte membranes by taurocholate is determined by their transbilayer orientation and hydrophobic backbone.
    Wüstner D; Pomorski T; Herrmann A; Müller P
    Biochemistry; 1998 Dec; 37(48):17093-103. PubMed ID: 9836604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes.
    Albalak A; Zeidel ML; Zucker SD; Jackson AA; Donovan JM
    Biochemistry; 1996 Jun; 35(24):7936-45. PubMed ID: 8672496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pH dependence of the hemolytic potency of bile salts.
    Ilani A; Granoth R
    Biochim Biophys Acta; 1990 Aug; 1027(2):199-204. PubMed ID: 2397231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of C60 fullerene on viscoelastic properties of human erythrocytes membrane].
    Shpakova NM; Nipot OS; Ishchenko IO; Pryluts'ka SV; Bohuts'ka KI; Cherepanov VV; Sandomyrs'kyĭ BP; Pryluts'kyĭ IuI
    Fiziol Zh (1994); 2014; 60(5):82-8. PubMed ID: 25566674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dependent and receptor-independent increase in osmotic fragility of rat erythrocytes by short-chain fatty acids.
    Mineo H; Hara H
    Biochim Biophys Acta; 2005 Jul; 1713(2):113-7. PubMed ID: 15963944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species-specific hemolysis of erythrocytes by T-2 toxin.
    DeLoach JR; Gyongyossy-Issa MI; Khachatourians GG
    Toxicol Appl Pharmacol; 1989 Jan; 97(1):107-12. PubMed ID: 2916229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choleretic and cholestatic effects of infused bile salts in the rat.
    Drew R; Priestly BG
    Experientia; 1979 Jun; 35(6):809-11. PubMed ID: 467601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.