These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8277882)

  • 1. Low-temperature stopped-flow rapid-scanning spectroscopy: performance tests and use of aqueous salt cryosolvents.
    Auld DS
    Methods Enzymol; 1993; 226():553-65. PubMed ID: 8277882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II.
    Bicknell R; Schäffer A; Waley SG; Auld DS
    Biochemistry; 1986 Nov; 25(22):7208-15. PubMed ID: 3099831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW; Hasnain SS
    Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A.
    Auld DS; Galdes A; Geoghegan KF; Holmquist B; Martinelli RA; Vallee BL
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5041-5. PubMed ID: 6591178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray absorption fine structure study of the active site of zinc and cobalt carboxypeptidase A in their solution and crystalline forms.
    Zhang K; Chance B; Auld DS; Larsen KS; Vallee BL
    Biochemistry; 1992 Feb; 31(4):1159-68. PubMed ID: 1734963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopy to watch catalysis by metalloenzymes: status and perspectives discussed for the water-splitting manganese complex of photosynthesis.
    Dau H; Haumann M
    J Synchrotron Radiat; 2003 Jan; 10(Pt 1):76-85. PubMed ID: 12511796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoenzymology of Bacillus cereus beta-lactamase II.
    Bicknell R; Waley SG
    Biochemistry; 1985 Nov; 24(24):6876-87. PubMed ID: 3935166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cocatalytic zinc motifs in enzyme catalysis.
    Vallee BL; Auld DS
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2715-8. PubMed ID: 8464881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of nascent metalloenzymes.
    Benson DE; Wisz MS; Hellinga HW
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6292-7. PubMed ID: 10841535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonuclease structure and catalysis: effects of crystalline enzyme, alcohol cryosolvents, low temperatures, and product inhibition.
    Fink AL; Kar D; Kotin R
    Biochemistry; 1987 Dec; 26(26):8571-9. PubMed ID: 3442677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning differentiates enzymatic and non-enzymatic metals in proteins.
    Feehan R; Franklin MW; Slusky JSG
    Nat Commun; 2021 Jun; 12(1):3712. PubMed ID: 34140507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mysteries of metals in metalloenzymes.
    Valdez CE; Smith QA; Nechay MR; Alexandrova AN
    Acc Chem Res; 2014 Oct; 47(10):3110-7. PubMed ID: 25207938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Papain-catalyzed reactions at subzero temperatures.
    Fink AL; Angelides KJ
    Biochemistry; 1976 Nov; 15(24):5287-93. PubMed ID: 999807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel BioXAS technique with sub-millisecond time resolution to track oxidation state and structural changes at biological metal centers.
    Haumann M; Müller C; Liebisch P; Neisius T; Dau H
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):35-44. PubMed ID: 15616363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metalloprotein Crystallography: More than a Structure.
    Bowman SE; Bridwell-Rabb J; Drennan CL
    Acc Chem Res; 2016 Apr; 49(4):695-702. PubMed ID: 26975689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water.
    Clark DS
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1299-307; discussion 1307, 1323-8. PubMed ID: 15306384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis.
    Cherepanov AV; De Vries S
    Biochim Biophys Acta; 2004 May; 1656(1):1-31. PubMed ID: 15136155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile rapid-mixing and flow device for X-ray absorption spectroscopy.
    Zhang K; Liu R; Irving T; Auld DS
    J Synchrotron Radiat; 2004 Mar; 11(Pt 2):204-8. PubMed ID: 14960787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.