These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8277882)
21. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers. Kern J; Yachandra VK; Yano J Curr Opin Struct Biol; 2015 Oct; 34():87-98. PubMed ID: 26342144 [TBL] [Abstract][Full Text] [Related]
22. The role of metals in enzyme activity. Riordan JF Ann Clin Lab Sci; 1977; 7(2):119-29. PubMed ID: 192123 [TBL] [Abstract][Full Text] [Related]
23. Cryoenzymology: enzyme action in slow motion. Dunn BM; Uversky VN Curr Protein Pept Sci; 2009 Oct; 10(5):408-15. PubMed ID: 19538150 [TBL] [Abstract][Full Text] [Related]
24. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins. Banci L; Bertini I; Mangani S J Synchrotron Radiat; 2005 Jan; 12(Pt 1):94-7. PubMed ID: 15616371 [TBL] [Abstract][Full Text] [Related]
25. A rapid freeze-quench setup for multi-frequency EPR spectroscopy of enzymatic reactions. Pievo R; Angerstein B; Fielding AJ; Koch C; Feussner I; Bennati M Chemphyschem; 2013 Dec; 14(18):4094-101. PubMed ID: 24323853 [TBL] [Abstract][Full Text] [Related]
26. Probing the reaction mechanism of the D-ala-D-ala dipeptidase, VanX, by using stopped-flow kinetic and rapid-freeze quench EPR studies on the Co(II)-substituted enzyme. Matthews ML; Periyannan G; Hajdin C; Sidgel TK; Bennett B; Crowder MW J Am Chem Soc; 2006 Oct; 128(40):13050-1. PubMed ID: 17017774 [TBL] [Abstract][Full Text] [Related]
27. Characterization of the cysteine-rich zinc-binding domains of protein kinase C by X-ray absorption spectroscopy. Hubbard SR Methods Enzymol; 1995; 252():123-32. PubMed ID: 7476345 [No Abstract] [Full Text] [Related]
28. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Hunt JA; Ahmed M; Fierke CA Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479 [TBL] [Abstract][Full Text] [Related]
29. Generation of new enzymes via covalent modification of existing proteins. Qi D; Tann CM; Haring D; Distefano MD Chem Rev; 2001 Oct; 101(10):3081-111. PubMed ID: 11710063 [No Abstract] [Full Text] [Related]
30. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Studer S; Hansen DA; Pianowski ZL; Mittl PRE; Debon A; Guffy SL; Der BS; Kuhlman B; Hilvert D Science; 2018 Dec; 362(6420):1285-1288. PubMed ID: 30545884 [TBL] [Abstract][Full Text] [Related]
31. Flexibility of metal binding sites in proteins on a database scale. Babor M; Greenblatt HM; Edelman M; Sobolev V Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624 [TBL] [Abstract][Full Text] [Related]
32. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications. Canne C; Lowe DJ; Fetzner S; Adams B; Smith AT; Kappl R; Bray RC; Hüttermann J Biochemistry; 1999 Oct; 38(42):14077-87. PubMed ID: 10529255 [TBL] [Abstract][Full Text] [Related]
33. Formation of stable crystalline enzyme-substrate intermediates at sub-zero temperatures. Fink AL; Ahmed AI Nature; 1976 Sep; 263(5575):294-7. PubMed ID: 8732 [TBL] [Abstract][Full Text] [Related]
34. Simulating the XANES of metalloenzymes - a case study. Mijovilovich A; Meyer-Klaucke W J Synchrotron Radiat; 2003 Jan; 10(Pt 1):64-8. PubMed ID: 12511793 [TBL] [Abstract][Full Text] [Related]
35. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Vogel A; Schilling O; Meyer-Klaucke W Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536 [TBL] [Abstract][Full Text] [Related]
36. Structure and dynamics of metalloproteins in live cells. Cook JD; Penner-Hahn JE; Stemmler TL Methods Cell Biol; 2008; 90():199-216. PubMed ID: 19195552 [TBL] [Abstract][Full Text] [Related]
37. [Kinetics and mechanisms of the reactions of transition metal complexes]. Simándi L; Besenyei G Acta Pharm Hung; 2000; 70(3-6):244-50. PubMed ID: 11379032 [TBL] [Abstract][Full Text] [Related]
38. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876 [TBL] [Abstract][Full Text] [Related]