These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8277885)

  • 1. Detecting metal-metal interactions and measuring distances between metal centers in metalloproteins.
    Maret W
    Methods Enzymol; 1993; 226():594-618. PubMed ID: 8277885
    [No Abstract]   [Full Text] [Related]  

  • 2. ENDOR of metalloenzymes.
    Hoffman BM
    Acc Chem Res; 2003 Jul; 36(7):522-9. PubMed ID: 12859213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.
    Lyubenova S; Maly T; Zwicker K; Brandt U; Ludwig B; Prisner T
    Acc Chem Res; 2010 Feb; 43(2):181-9. PubMed ID: 19842617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Paramagnetic Resonance Spectroscopy of Metalloproteins.
    Jasniewski A; Hu Y; Ribbe MW
    Methods Mol Biol; 2019; 1876():197-211. PubMed ID: 30317483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in bioinorganic spectroscopy.
    Lehnert N; George SD; Solomon EI
    Curr Opin Chem Biol; 2001 Apr; 5(2):176-87. PubMed ID: 11282345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-metal distance determination in cobalt(II) stellacyanin by 1H nuclear magnetic resonance relaxation measurements including Curie-spin effects: a proposed structure of the metal-binding region.
    Dahlin S; Reinhammar B; Angström J
    Biochemistry; 1989 Sep; 28(18):7224-33. PubMed ID: 2554966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy.
    Flores M; Olson TL; Wang D; Edwardraja S; Shinde S; Williams JC; Ghirlanda G; Allen JP
    J Phys Chem B; 2015 Oct; 119(43):13825-33. PubMed ID: 26201933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed electron nuclear multiple resonance spectroscopic methods for metalloproteins and metalloenzymes.
    Thomann H; Bernardo M
    Methods Enzymol; 1993; 227():118-89. PubMed ID: 8255224
    [No Abstract]   [Full Text] [Related]  

  • 9. Looking at enzymes in action in the 1950s.
    Beinert H
    Protein Sci; 1994 Sep; 3(9):1605-12. PubMed ID: 7833819
    [No Abstract]   [Full Text] [Related]  

  • 10. Stereoelectronic properties of metalloenzymes. II. Effects of ligand coordination on the electron spin resonance spectrum of galactose oxidase as a probe of structure and function.
    Giordano RS; Bereman RD; Kosman DJ; Ettinger MJ
    J Am Chem Soc; 1974 Feb; 96(4):1023-6. PubMed ID: 4361301
    [No Abstract]   [Full Text] [Related]  

  • 11. Corroborative models of the cobalt(II) inhibited Fe/Mn superoxide dismutases.
    Scarpellini M; Wu AJ; Kampf JW; Pecoraro VL
    Inorg Chem; 2005 Jul; 44(14):5001-10. PubMed ID: 15998028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile approach toward the self-assembly of heteromultimetallic salen structures.
    Wezenburg SJ; Escudero-Adán EC; Benet-Buchholz J; Kleij AW
    Inorg Chem; 2008 Apr; 47(8):2925-7. PubMed ID: 18338848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using NMR solvent water relaxation to investigate metalloenzyme-ligand binding interactions.
    Leung IK; Flashman E; Yeoh KK; Schofield CJ; Claridge TD
    J Med Chem; 2010 Jan; 53(2):867-75. PubMed ID: 20025281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The solution structure of paramagnetic metalloproteins.
    Bertini I; Luchinat C; Rosato A
    Prog Biophys Mol Biol; 1996; 66(1):43-80. PubMed ID: 9107132
    [No Abstract]   [Full Text] [Related]  

  • 15. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW; Hasnain SS
    Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and spectroscopic probes of mercury(II) coordination environments in proteins.
    Utschig LM; Wright JG; O'Halloran TV
    Methods Enzymol; 1993; 226():71-97. PubMed ID: 8277886
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis, X-ray crystal structure, and redox and electronic properties of iron(III)-polyimidazole complexes relevant to the metal sites of iron proteins.
    Chauvin AS; Frapart YM; Vaissermann J; Donnadieu B; Tuchagues JP; Chottard JC; Li Y
    Inorg Chem; 2003 Mar; 42(6):1895-900. PubMed ID: 12639122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared spectroscopy.
    Nakamoto K; Czernuszewicz RS
    Methods Enzymol; 1993; 226():259-89. PubMed ID: 8277868
    [No Abstract]   [Full Text] [Related]  

  • 20. Electronic absorption spectroscopy of copper proteins.
    Solomon EI; Lowery MD; LaCroix LB; Root DE
    Methods Enzymol; 1993; 226():1-33. PubMed ID: 8277862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.