These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 8278574)

  • 1. Proton stopping powers in some low-Z elements.
    Sharada KS
    Radiat Res; 1993 Dec; 136(3):335-40. PubMed ID: 8278574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
    Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H
    Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic stopping power of liquid water for protons down to the Bragg peak.
    Emfietzoglou D; Pathak A; Nikjoo H
    Radiat Prot Dosimetry; 2007; 126(1-4):97-100. PubMed ID: 17504748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New stopping power formula for intermediate energy electrons.
    Gümüş H
    Appl Radiat Isot; 2008 Dec; 66(12):1886-90. PubMed ID: 18586505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of stopping power ratios for carbon ion dosimetry.
    Geithner O; Andreo P; Sobolevsky N; Hartmann G; Jäkel O
    Phys Med Biol; 2006 May; 51(9):2279-92. PubMed ID: 16625042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-dependent Energy Loss of Protons in Pb and Be Targets and Percent Mass-Stopping Power from Bethe-Bloch Formula and Bichsel-Sternheimer Data Within 1-12 MeV Energy Range: A Comparative Study Based on Bland-Altman Analysis.
    Iqbal A; Ullah N; Ur Rahman A
    J Med Imaging Radiat Sci; 2019 Mar; 50(1):149-156. PubMed ID: 30777237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The calculation of proton and secondary electron stopping powers in liquid water.
    Marouane A; Inchaouh J; Ouaskit S; Fathi A
    Appl Radiat Isot; 2012 Jul; 70(7):1089-94. PubMed ID: 22261088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionization yields in hydrocarbons under electron irradiation.
    Tung CJ; Baum JW
    Radiat Res; 1989 Sep; 119(3):413-23. PubMed ID: 2772134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies.
    Akar A; Gümüş H; Okumuşoğlu NT
    Appl Radiat Isot; 2006 May; 64(5):543-50. PubMed ID: 16388951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear, separable two-parameter model for dual energy CT imaging of proton stopping power computation.
    Han D; Siebers JV; Williamson JF
    Med Phys; 2016 Jan; 43(1):600. PubMed ID: 26745952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20-10000 eV.
    Tan Z; Xia Y; Liu X; Zhao M; Zhang L
    Appl Radiat Isot; 2009 Apr; 67(4):625-9. PubMed ID: 19138526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical calculation of electronic stopping power of water vapor by proton impact.
    Olivera GH; Martínez AE; Rivarola RD; Fainstein PD
    Radiat Res; 1995 Nov; 144(2):241-7. PubMed ID: 7480652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of the frozen-charge paradox in stopping of channeled heavy ions.
    Sigmund P; Schinner A
    Phys Rev Lett; 2001 Feb; 86(8):1486-9. PubMed ID: 11290174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stopping power and the concept of effective ion charge at low energies.
    Azziz N; Hajnal F; Lowder WM; Murley P
    Radiat Res; 1992 Dec; 132(3):277-81. PubMed ID: 1475349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A simple formula for determination of the mean electron energy in a body irradiated by fast electrons (author's transl)].
    Markus B
    Strahlentherapie; 1978 Jun; 154(6):388-93. PubMed ID: 96551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams.
    Palmans H; Verhaegen F
    Phys Med Biol; 2005 Mar; 50(5):991-1000. PubMed ID: 15798271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Bethe formula for low-energy electron stopping power without fitting parameters.
    Nguyen-Truong HT
    Ultramicroscopy; 2015 Feb; 149():26-33. PubMed ID: 25436926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.