BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8278601)

  • 1. Structure-function relationship studies in human cholinesterases reveal genomic origins for individual variations in cholinergic drug responses.
    Loewenstein Y; Gnatt A; Neville LF; Zakut H; Soreq H
    Prog Neuropsychopharmacol Biol Psychiatry; 1993 Nov; 17(6):905-26. PubMed ID: 8278601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE.
    Neville LF; Gnatt A; Loewenstein Y; Seidman S; Ehrlich G; Soreq H
    EMBO J; 1992 Apr; 11(4):1641-9. PubMed ID: 1373381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y; Gnatt A; Neville LF; Soreq H
    J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cholinesterases].
    Lejus C; Blanloeil Y; Burnat P; Souron R
    Ann Fr Anesth Reanim; 1998; 17(9):1122-35. PubMed ID: 9835982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinesterases: new roles in brain function and in Alzheimer's disease.
    Giacobini E
    Neurochem Res; 2003 Apr; 28(3-4):515-22. PubMed ID: 12675140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants.
    Schwarz M; Loewenstein-Lichtenstein Y; Glick D; Liao J; Norgaard-Pedersen B; Soreq H
    Brain Res Mol Brain Res; 1995 Jul; 31(1-2):101-10. PubMed ID: 7476018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations.
    Neville LF; Gnatt A; Padan R; Seidman S; Soreq H
    J Biol Chem; 1990 Dec; 265(34):20735-8. PubMed ID: 2249982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease.
    Small DH; Michaelson S; Sberna G
    Neurochem Int; 1996; 28(5-6):453-83. PubMed ID: 8792327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants.
    Darvesh S; Pottie IR; Darvesh KV; McDonald RS; Walsh R; Conrad S; Penwell A; Mataija D; Martin E
    Bioorg Med Chem; 2010 Mar; 18(6):2232-2244. PubMed ID: 20181484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of synthetic oligodeoxynucleotide probes for the isolation of a human cholinesterase cDNA clone.
    Prody C; Zevin-Sonkin D; Gnatt A; Koch R; Zisling R; Goldberg O; Soreq H
    J Neurosci Res; 1986; 16(1):25-35. PubMed ID: 3755763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of bambuterol with human serum cholinesterase of the genotypes EuEu (normal), EaEa (atypical) and EuEa.
    Tunek A; Hjertberg E; Mogensen JV
    Biochem Pharmacol; 1991 Feb; 41(3):345-8. PubMed ID: 1994894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.
    Hagstrom D; Hirokawa H; Zhang L; Radic Z; Taylor P; Collins ES
    Arch Toxicol; 2017 Aug; 91(8):2837-2847. PubMed ID: 27990564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.
    Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA
    Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of acetophenone ligands as potential neuroimaging agents for cholinesterases.
    Jollymore-Hughes CT; Pottie IR; Martin E; Rosenberry TL; Darvesh S
    Bioorg Med Chem; 2016 Nov; 24(21):5270-5279. PubMed ID: 27637382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinesterases, a target of pharmacology and toxicology.
    Pohanka M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2011 Sep; 155(3):219-29. PubMed ID: 22286807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma cholinesterase: gene and variations.
    Pantuck EJ
    Anesth Analg; 1993 Aug; 77(2):380-6. PubMed ID: 8346840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of alternatively terminated unusual human butyrylcholinesterase messenger RNA transcripts, mapping to chromosome 3q26-ter, in nervous system tumors.
    Gnatt A; Prody CA; Zamir R; Lieman-Hurwitz J; Zakut H; Soreq H
    Cancer Res; 1990 Apr; 50(7):1983-7. PubMed ID: 2317787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of cholinesterase genes in human oocytes revealed by in-situ hybridization.
    Soreq H; Malinger G; Zakut H
    Hum Reprod; 1987 Nov; 2(8):689-93. PubMed ID: 2830295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coumarins as cholinesterase inhibitors: A review.
    de Souza LG; Rennã MN; Figueroa-Villar JD
    Chem Biol Interact; 2016 Jul; 254():11-23. PubMed ID: 27174134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.