These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8279509)

  • 21. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?
    Smith IC; Gittings W; Huang J; McMillan EM; Quadrilatero J; Tupling AR; Vandenboom R
    J Gen Physiol; 2013 Mar; 141(3):297-308. PubMed ID: 23401574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myosin light chain phosphorylation during staircase in fatigued skeletal muscle.
    MacIntosh BR; Grange RW; Cory CR; Houston ME
    Pflugers Arch; 1993 Oct; 425(1-2):9-15. PubMed ID: 8272388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torque potentiation and myosin light-chain phosphorylation in human muscle following a fatiguing contraction.
    Houston ME; Grange RW
    Can J Physiol Pharmacol; 1991 Feb; 69(2):269-73. PubMed ID: 2054743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of low frequency stimulation on myosin light chain phosphorylation in skeletal muscle.
    Klug GA; Botterman BR; Stull JT
    J Biol Chem; 1982 May; 257(9):4688-90. PubMed ID: 7068657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myosin light chain phosphorylation and contractile performance of human skeletal muscle.
    Stuart DS; Lingley MD; Grange RW; Houston ME
    Can J Physiol Pharmacol; 1988 Jan; 66(1):49-54. PubMed ID: 3370535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.
    Gittings W; Aggarwal H; Stull JT; Vandenboom R
    Can J Physiol Pharmacol; 2015 Jan; 93(1):23-32. PubMed ID: 25412230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shortening speed dependent force potentiation is attenuated but not eliminated in skeletal muscles without myosin phosphorylation.
    Gittings W; Bunda J; Vandenboom R
    J Muscle Res Cell Motil; 2017 Apr; 38(2):157-162. PubMed ID: 28251466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of myosin light chain in skeletal and smooth muscles.
    Stull JT; Silver PJ; Miller JR; Blumenthal DK; Botterman BR; Klug GA
    Fed Proc; 1983 Jan; 42(1):21-6. PubMed ID: 6293879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle.
    Crow MT; Kushmerick MJ
    J Biol Chem; 1982 Mar; 257(5):2121-4. PubMed ID: 7061410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Length-dependence of isometric twitch tension potentiation and myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Persechini A
    J Cell Physiol; 1990 May; 143(2):257-62. PubMed ID: 2332450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction.
    Zhi G; Ryder JW; Huang J; Ding P; Chen Y; Zhao Y; Kamm KE; Stull JT
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17519-24. PubMed ID: 16299103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle.
    Houston ME; Grange RW
    Can J Physiol Pharmacol; 1990 Jul; 68(7):908-13. PubMed ID: 2383804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronic low frequency stimulation reduces myosin phosphorylation in rabbit fast twitch muscle.
    Klug GA; Biedermann M; Houston ME; Stuart D; Mumby M; Stull JT
    Can J Physiol Pharmacol; 1992 Jun; 70(6):859-65. PubMed ID: 1330259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D; Gittings W; Huang J; Vandenboom R
    J Exp Biol; 2011 Dec; 214(Pt 23):3915-23. PubMed ID: 22071182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle.
    Gittings W; Huang J; Smith IC; Quadrilatero J; Vandenboom R
    J Muscle Res Cell Motil; 2011 Mar; 31(5-6):337-48. PubMed ID: 21298329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.
    Bowslaugh J; Gittings W; Vandenboom R
    Pflugers Arch; 2016 Nov; 468(11-12):2007-2016. PubMed ID: 27896430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice.
    Plant DR; Gregorevic P; Williams DA; Lynch GS
    J Appl Physiol (1985); 2001 Mar; 90(3):832-8. PubMed ID: 11181590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.
    Gittings W; Bunda J; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29122950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.