These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 8279513)

  • 1. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux.
    Jackson PS; Strange K
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1489-500. PubMed ID: 8279513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells.
    Strange K; Morrison R; Shrode L; Putnam R
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C244-56. PubMed ID: 8393281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells.
    Lambert IH; Hoffmann EK
    J Membr Biol; 1994 Dec; 142(3):289-98. PubMed ID: 7535853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP depletion and inactivation of an ATP-sensitive taurine channel by classic ion channel blockers.
    Ballatori N; Truong AT; Jackson PS; Strange K; Boyer JL
    Mol Pharmacol; 1995 Sep; 48(3):472-6. PubMed ID: 7565627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding.
    Jackson PS; Morrison R; Strange K
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1203-9. PubMed ID: 7526694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume-regulatory taurine release from a human lung cancer cell line. Evidence for amino acid transport via a volume-activated chloride channel.
    Kirk K; Kirk J
    FEBS Lett; 1993 Dec; 336(1):153-8. PubMed ID: 8262200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ketoconazole blocks organic osmolyte efflux independently of its effect on arachidonic acid conversion.
    McManus M; Serhan C; Jackson P; Strange K
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C266-71. PubMed ID: 7519397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium.
    Bagnasco SM; Montrose MH; Handler JS
    Am J Physiol; 1993 May; 264(5 Pt 1):C1165-70. PubMed ID: 8498477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of extracellular bicarbonate ions and pH on volume-regulatory taurine efflux from rat cerebral cortical slices in vitro: evidence for separate neutral and anionic transport mechanisms.
    Law RO
    Biochim Biophys Acta; 1994 Dec; 1224(3):377-83. PubMed ID: 7803493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume-associated osmolyte fluxes in cell lines with or without the anion exchanger.
    Sánchez-Olea R; Fuller C; Benos D; Pasantes-Morales H
    Am J Physiol; 1995 Nov; 269(5 Pt 1):C1280-6. PubMed ID: 7491919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume-sensitive taurine transport in bovine articular chondrocytes.
    Hall AC
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):755-66. PubMed ID: 7623290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astrocytes.
    Sánchez-Olea R; Peña C; Morán J; Pasantes-Morales H
    Neurosci Lett; 1993 Jun; 156(1-2):141-4. PubMed ID: 8414176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory volume decrease in cultured astrocytes. II. Permeability pathway to amino acids and polyols.
    Pasantes-Morales H; Murray RA; Sánchez-Olea R; Morán J
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C172-8. PubMed ID: 8304414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a hyposmotic shock on amino acid efflux from lactating rat mammary tissue: stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels.
    Shennan DB; McNeillie SA; Curran DE
    Exp Physiol; 1994 Sep; 79(5):797-808. PubMed ID: 7529510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance.
    Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurine and cell volume maintenance in the shark rectal gland: cellular fluxes and kinetics.
    Ziyadeh FN; Feldman GM; Booz GW; Kleinzeller A
    Biochim Biophys Acta; 1988 Aug; 943(1):43-52. PubMed ID: 2840958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertonic stress increases NaK ATPase, taurine, and myoinositol in human lens and retinal pigment epithelial cultures.
    Yokoyama T; Lin LR; Chakrapani B; Reddy VN
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2512-7. PubMed ID: 8392038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of organic substrates via a volume-activated channel.
    Kirk K; Ellory JC; Young JD
    J Biol Chem; 1992 Nov; 267(33):23475-8. PubMed ID: 1385424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence.
    Ballatori N; Boyer JL
    Am J Physiol; 1992 Mar; 262(3 Pt 1):G451-60. PubMed ID: 1550235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine.
    Uchida S; Nakanishi T; Kwon HM; Preston AS; Handler JS
    J Clin Invest; 1991 Aug; 88(2):656-62. PubMed ID: 1864974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.