These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8279516)

  • 21. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit.
    Brosnan MJ; Raman SP; Chen L; Koretsky AP
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C151-60. PubMed ID: 8430764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart.
    Saupe KW; Spindler M; Hopkins JC; Shen W; Ingwall JS
    J Biol Chem; 2000 Jun; 275(26):19742-6. PubMed ID: 10867023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion.
    Banerjee A; Grosso MA; Brown JM; Rogers KB; Whitman GJ
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H590-7. PubMed ID: 1877684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible injury: creatinine kinase recovery restores bioenergetics and function.
    Kaplan LJ; Blum H; Bellows CF; Banerjee A; Whitman GJ
    J Surg Res; 1996 Apr; 62(1):103-8. PubMed ID: 8606495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MR spectroscopy in heart failure--clinical and experimental findings.
    Ten Hove M; Neubauer S
    Heart Fail Rev; 2007 Mar; 12(1):48-57. PubMed ID: 17333358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic shift in liver: correlation between perfusion temperature and hypoxia inducible factor-1α.
    Ferrigno A; Di Pasqua LG; Bianchi A; Richelmi P; Vairetti M
    World J Gastroenterol; 2015 Jan; 21(4):1108-16. PubMed ID: 25632183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue.
    Kehrer JP; Park Y; Sies H
    J Appl Physiol (1985); 1988 Oct; 65(4):1855-60. PubMed ID: 3182545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase.
    Kan HE; Renema WK; Isbrandt D; Heerschap A
    J Physiol; 2004 Oct; 560(Pt 1):219-29. PubMed ID: 15284341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats.
    Yager JY; Brucklacher RM; Vannucci RC
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H672-7. PubMed ID: 1558174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study.
    in 't Zandt HJ; Renema WK; Streijger F; Jost C; Klomp DW; Oerlemans F; Van der Zee CE; Wieringa B; Heerschap A
    J Neurochem; 2004 Sep; 90(6):1321-30. PubMed ID: 15341516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity.
    van Deursen J; Heerschap A; Oerlemans F; Ruitenbeek W; Jap P; ter Laak H; Wieringa B
    Cell; 1993 Aug; 74(4):621-31. PubMed ID: 8358791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of creatine kinase isoenzymes and substrates on regeneration in livers of transgenic mice.
    Askenasy N; Koretsky AP
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C741-6. PubMed ID: 9277372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia.
    Gutierrez G; Pohil RJ; Andry JM; Strong R; Narayana P
    J Appl Physiol (1985); 1988 Aug; 65(2):608-16. PubMed ID: 3170412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. P-31 nuclear magnetic resonance analysis of brain: II. Effects of oxygen deprivation on isolated perfused and nonperfused rat brain.
    Kopp SJ; Krieglstein J; Freidank A; Rachman A; Seibert A; Cohen MM
    J Neurochem; 1984 Dec; 43(6):1716-31. PubMed ID: 6092545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free ADP levels in transgenic mouse liver expressing creatine kinase. Effects of enzyme activity, phosphagen type, and substrate concentration.
    Brosnan MJ; Chen L; Van Dyke TA; Koretsky AP
    J Biol Chem; 1990 Dec; 265(34):20849-55. PubMed ID: 2249991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protecting myocardial creatine kinase activity during reperfusion improves bioenergetics and contractile function.
    Kaplan LJ; Blum H; Banerjee A; Whitman GJ
    J Surg Res; 1993 Apr; 54(4):311-5. PubMed ID: 8331924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of normal and reperfused livers to glucagon stimulation: NMR detection of blood flow and high-energy phosphates.
    Walsh TR; Detre JA; Koretsky AP; Simplaceanu E; Halow JM; Rao P; Makowka L; Ho C
    Biochim Biophys Acta; 1993 Mar; 1181(1):7-14. PubMed ID: 8457608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liver adenine nucleotide metabolism during ischemia and reperfusion of mice livers studied by phosphorous-31 nuclear magnetic resonance.
    Lee RG; Lanir A; Clouse ME
    Invest Radiol; 1987 Jun; 22(6):479-83. PubMed ID: 3623851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.