These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 8280064)
1. Analysis, by electrospray ionization mass spectrometry, of several forms of Clostridium pasteurianum rubredoxin. Petillot Y; Forest E; Mathieu I; Meyer J; Moulis JM Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):657-61. PubMed ID: 8280064 [TBL] [Abstract][Full Text] [Related]
2. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113 [TBL] [Abstract][Full Text] [Related]
3. Cloning, sequencing and expression in Escherichia coli of the rubredoxin gene from Clostridium pasteurianum. Mathieu I; Meyer J; Moulis JM Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):255-62. PubMed ID: 1637309 [TBL] [Abstract][Full Text] [Related]
4. Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Maher M; Cross M; Wilce MC; Guss JM; Wedd AG Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):298-303. PubMed ID: 14747706 [TBL] [Abstract][Full Text] [Related]
5. Assembly of a [2Fe-2S]2+ cluster in a molecular variant of Clostridium pasteurianum rubredoxin. Meyer J; Gagnon J; Gaillard J; Lutz M; Achim C; Münck E; Pétillot Y; Colangelo CM; Scott RA Biochemistry; 1997 Oct; 36(43):13374-80. PubMed ID: 9341230 [TBL] [Abstract][Full Text] [Related]
6. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation. Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500 [TBL] [Abstract][Full Text] [Related]
7. Analysis of metal incorporation during overexpression of Clostridium pasteurianum rubredoxin by electrospray FTICR mass spectrometry. Taylor PK; Parks BA; Kurtz DM; Amster IJ J Biol Inorg Chem; 2001 Feb; 6(2):201-6. PubMed ID: 11293415 [TBL] [Abstract][Full Text] [Related]
8. Mössbauer, EPR, and MCD studies of the C9S and C42S variants of Clostridium pasteurianum rubredoxin and MDC studies of the wild-type protein. Yoo SJ; Meyer J; Achim C; Peterson J; Hendrich MP; Münck E J Biol Inorg Chem; 2000 Aug; 5(4):475-87. PubMed ID: 10968619 [TBL] [Abstract][Full Text] [Related]
9. Expression of a synthetic gene coding for the amino acid sequence of Clostridium pasteurianum rubredoxin. Eidsness MK; O'Dell SE; Kurtz DM; Robson RL; Scott RA Protein Eng; 1992 Jun; 5(4):367-71. PubMed ID: 1409558 [TBL] [Abstract][Full Text] [Related]
10. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin. LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245 [TBL] [Abstract][Full Text] [Related]
11. Removal of a cysteine ligand from rubredoxin: assembly of Fe(2)S(2) and Fe(S-Cys)(3)(OH) centres. Cross M; Xiao Z; Maes EM; Czernuszewicz RS; Drew SC; Pilbrow JR; George GN; Wedd AG J Biol Inorg Chem; 2002 Sep; 7(7-8):781-90. PubMed ID: 12203014 [TBL] [Abstract][Full Text] [Related]
12. Rubredoxin from Clostridium thermosaccharolyticum. Amino acid sequence, mass-spectrometric and preliminary crystallographic data. Meyer J; Gagnon J; Sieker LC; Van Dorsselaer A; Moulis JM Biochem J; 1990 Nov; 271(3):839-41. PubMed ID: 2244884 [TBL] [Abstract][Full Text] [Related]
13. Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein. Bonomi F; Fessas D; Iametti S; Kurtz DM; Mazzini S Protein Sci; 2000 Dec; 9(12):2413-26. PubMed ID: 11206063 [TBL] [Abstract][Full Text] [Related]
14. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB; Park NS; Ichiye T Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963 [TBL] [Abstract][Full Text] [Related]
16. Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Lee HJ; Lian LY; Scrutton NS Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):131-6. PubMed ID: 9359843 [TBL] [Abstract][Full Text] [Related]
17. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high-molecular-weight rubredoxin. Das A; Coulter ED; Kurtz DM; Ljungdahl LG J Bacteriol; 2001 Mar; 183(5):1560-7. PubMed ID: 11160086 [TBL] [Abstract][Full Text] [Related]
18. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin. Gaillard J; Zhuang-Jackson H; Moulis JM Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944 [TBL] [Abstract][Full Text] [Related]
19. A scanning tunnelling microscopy study of Clostridium pasteurianum rubredoxin. Mukhopadhyay R; Davis JJ; Kyritsis P; Hill HA; Meyer J J Inorg Biochem; 2000 Feb; 78(3):251-4. PubMed ID: 10805182 [TBL] [Abstract][Full Text] [Related]
20. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation. LeMaster DM; Tang J; Hernández G Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]