These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 828023)

  • 1. Physiological effects of the presence and absence of gas vacuoles in the blue-green alga, Microcystis aeruginosa Kuetz. emend. Elenkin.
    Porter J; Jost M
    Arch Microbiol; 1976 Nov; 110(23):225-31. PubMed ID: 828023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of gas vacuoles in a cell-free system of the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin.
    Lehmann H; Jost M
    Arch Mikrobiol; 1972; 81(1):100-2. PubMed ID: 4621732
    [No Abstract]   [Full Text] [Related]  

  • 3. Morphological parameters and macromolecular organization of gas vacuole membranes of Microcystis aeruginosa Kuetz. emend. Elenkin.
    Jost M; Jones DD
    Can J Microbiol; 1970 Mar; 16(3):159-64. PubMed ID: 4191159
    [No Abstract]   [Full Text] [Related]  

  • 4. Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles.
    Dubelaar GB; Visser JW; Donze M
    Cytometry; 1987 Jul; 8(4):405-12. PubMed ID: 3113896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and chemical characterization of gas-vacuole membranes from Microcystis aeruginosa Kuetz. emend. Elenkin.
    Jones DD; Jost M
    Arch Mikrobiol; 1970; 70(1):43-64. PubMed ID: 4193326
    [No Abstract]   [Full Text] [Related]  

  • 6. Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes.
    Ibelings BW; Kroon BMA; Mur LR
    New Phytol; 1994 Nov; 128(3):407-424. PubMed ID: 33874577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors.
    Li P; Song Y; Yu S; Park HD
    Chemosphere; 2015 Oct; 136():245-51. PubMed ID: 26026840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions.
    Bañares-España E; Kromkamp JC; López-Rodas V; Costas E; Flores-Moya A
    FEMS Microbiol Ecol; 2013 Mar; 83(3):700-10. PubMed ID: 23057858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recruitment ability of Microcystis aeruginosa under low light-low temperature combination].
    Tang J; Song LR; Sun SS; Wei HH; Wan N
    Huan Jing Ke Xue; 2010 Dec; 31(12):2932-7. PubMed ID: 21360882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of Litchi chinensis Defoliation on Growth and Photosynthesis of Microcystis aeruginosa].
    Wang XX; Jiang CC; Li JW; Wang XJ
    Huan Jing Ke Xue; 2015 May; 36(5):1648-54. PubMed ID: 26314111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell-water relations of cyanobacterial cells.
    Holland DP; Walsby AE
    J Microbiol Methods; 2009 May; 77(2):214-24. PubMed ID: 19230840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa.
    Mao F; He Y; Kushmaro A; Gin KY
    Aquat Toxicol; 2017 Dec; 193():1-8. PubMed ID: 28992446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium.
    Zhou W; Juneau P; Qiu B
    Chemosphere; 2006 Dec; 65(10):1738-46. PubMed ID: 16777178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the effect of Fe(III) on proliferation of Microcystis aeruginosa at high nitrate and low chlorophyll condition.
    Chen R; Lei Z; Ji J; Wang X; Li YY; Yang Y; Zhang L; Xue T
    J Environ Sci (China); 2017 Feb; 52():105-110. PubMed ID: 28254028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between pigment content and photosynthetic characteristics in a blue-green algae.
    MYERS J; KRATZ WA
    J Gen Physiol; 1955 Sep; 39(1):11-22. PubMed ID: 13252232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa.
    Hong Y; Huang JJ; Hu HY
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):502-8. PubMed ID: 19557299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the growth of Microcystis aeruginosa Kutz, emend, Elenkin.
    ZEHNDER A; GORHAM PR
    Can J Microbiol; 1960 Dec; 6():645-60. PubMed ID: 13788092
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of UVB Radiation on competition between the bloom-forming cyanobacterium Microcystis aeruginosa and the Chlorophyceae Chlamydomonas microsphaera(1).
    Zhang Y; Jiang HB; Qiu BS
    J Phycol; 2013 Apr; 49(2):318-28. PubMed ID: 27008518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capsular polysaccharides facilitate enhanced iron acquisition by the colonial cyanobacterium Microcystis sp. isolated from a freshwater lake.
    Li ZK; Dai GZ; Juneau P; Qiu BS
    J Phycol; 2016 Feb; 52(1):105-15. PubMed ID: 26987092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dissolved organic matter from different sources on Microcystis aeruginosa growth and physiological characteristics.
    Zhao M; Qu D; Shen W; Li M
    Ecotoxicol Environ Saf; 2019 Jul; 176():125-131. PubMed ID: 30925328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.