These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 828029)

  • 1. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica.
    Miller DM; Jones JH; Yopp JH; Tindall DR; Schmid WE
    Arch Microbiol; 1976 Dec; 111(1-2):145-9. PubMed ID: 828029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halophilic-blue-green algae.
    Brock TD
    Arch Microbiol; 1976 Feb; 107(1):109-11. PubMed ID: 814875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.
    Laloknam S; Tanaka K; Buaboocha T; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Takabe T
    Appl Environ Microbiol; 2006 Sep; 72(9):6018-26. PubMed ID: 16957224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement of alkanes for salt tolerance of Cyanobacteria: characterization of alkane synthesis genes from salt-sensitive Synechococcus elongatus PCC7942 and salt-tolerant Aphanothece halophytica.
    Yamamori T; Kageyama H; Tanaka Y; Takabe T
    Lett Appl Microbiol; 2018 Sep; 67(3):299-305. PubMed ID: 30039571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH.
    Wutipraditkul N; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Nakamura T; Shikata M; Takabe T; Takabe T
    Appl Environ Microbiol; 2005 Aug; 71(8):4176-84. PubMed ID: 16085800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica.
    Belkin S; Padan E
    Arch Microbiol; 1978 Jan; 116(1):109-11. PubMed ID: 414684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle: a three phase system. The partition of divalent ions across the membrane.
    FRATER R; SIMON SE; SHAW FH
    J Gen Physiol; 1959 Sep; 43(1):81-96. PubMed ID: 13824654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism.
    Linzell JL; Peaker M
    J Physiol; 1971 Aug; 216(3):683-700. PubMed ID: 5105748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement.
    SCHULTZ SG; SOLOMON AK
    J Gen Physiol; 1961 Nov; 45(2):355-69. PubMed ID: 13909521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent uptake of glutamate by novel ApGltS enhanced growth under salt stress of halotolerant cyanobacterium Aphanothece halophytica.
    Boonburapong B; Laloknam S; Yamada N; Incharoensakdi A; Takabe T
    Biosci Biotechnol Biochem; 2012; 76(9):1702-7. PubMed ID: 22972333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular concentrations of the salt gland of the herring gull Larus argentatus.
    Schmidt-Nielsen B
    Am J Physiol; 1976 Feb; 230(2):514-21. PubMed ID: 1259030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reactions of cyanobacteria to certain heavy metals].
    Kostiaev VIa
    Mikrobiologiia; 1980; 49(5):821-4. PubMed ID: 6777649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal transport of Na, Ca, Mg, and K during volume expansion and distal blockade.
    Antoniou LD; Shalhoub RJ; Gallagher P; O'Connell JM
    Am J Physiol; 1971 Mar; 220(3):816-22. PubMed ID: 5545694
    [No Abstract]   [Full Text] [Related]  

  • 15. Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophytica.
    Incharoensakdi A; Karnchanatat A
    Biochim Biophys Acta; 2003 Apr; 1621(1):102-9. PubMed ID: 12667616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Variations in the content of Mg, Ca, K and Na during the post-embryonic growth of Tribolium confusm Duval (Coleoptera: Tenebrionidae)].
    HUOT L; LEMONDE A
    Arch Int Physiol Biochim; 1959 Oct; 67():618-32. PubMed ID: 14405491
    [No Abstract]   [Full Text] [Related]  

  • 18. Potassium accumulation and sodium efflux by Porphyra perforata tissues in lithium and magnesium sea water.
    EPPLEY RW
    J Gen Physiol; 1959 Sep; 43(1):29-38. PubMed ID: 13820476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of prolonged ouabain treatment of Na, K, Cl and Ca concentration and fluxes in cultured human cells.
    Lamb JF; McCall D
    J Physiol; 1972 Sep; 225(3):599-617. PubMed ID: 5076390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between sodium, potassium, and chloride in amphibian muscle.
    SIMON SE; SHAW FH; BENNETT S; MULLER M
    J Gen Physiol; 1957 May; 40(5):753-77. PubMed ID: 13428987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.