These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8280878)

  • 41. Contribution of early-emigrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos.
    Imai H; Osumi-Yamashita N; Ninomiya Y; Eto K
    Dev Biol; 1996 Jun; 176(2):151-65. PubMed ID: 8660858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Holoprosencephaly: new concepts.
    Simon EM; Barkovich AJ
    Magn Reson Imaging Clin N Am; 2001 Feb; 9(1):149-64, viii-ix. PubMed ID: 11278187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The chondrocranium of an 18 mm human embryo. A 3-dimensional computer-assisted reconstruction].
    Bettega G; Aitedajer T; Mole C; Bouchet P; Jacquemin P; Sanson P; Mallet JL; Stricker M; Gérard H
    Rev Stomatol Chir Maxillofac; 1999 Apr; 100(1):6-12. PubMed ID: 10444765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenotypic variability in human embryonic holoprosencephaly in the Kyoto Collection.
    Yamada S; Uwabe C; Fujii S; Shiota K
    Birth Defects Res A Clin Mol Teratol; 2004 Aug; 70(8):495-508. PubMed ID: 15329827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Embryology of neural crests and their classification].
    Gogly B
    Rev Orthop Dento Faciale; 1990; 24(4):401-26. PubMed ID: 2077626
    [No Abstract]   [Full Text] [Related]  

  • 46. No evidence for ventrally migrating neural tube cells from the mid- and hindbrain.
    Yaneza M; Gilthorpe JD; Lumsden A; Tucker AS
    Dev Dyn; 2002 Jan; 223(1):163-7. PubMed ID: 11803580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a morphologically-based scoring system for postimplantation New Zealand White rabbit embryos.
    Pitt JA; Carney EW
    Teratology; 1999 Feb; 59(2):88-101. PubMed ID: 10069439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Holoprosencephaly with agenesia of the prosencephalic ventricle.
    Laure-Kamionowska M; Szymanska K; Klepacka T
    Folia Neuropathol; 2015; 53(4):387-94. PubMed ID: 26785373
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histological study of the cranial neural folds of mice genetically liable to exencephaly.
    Gunn TM; Juriloff DM; Vogl W; Harris MJ; Miller JE
    Teratology; 1993 Nov; 48(5):459-71. PubMed ID: 8303615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphology and morphometry of the human embryonic brain: A three-dimensional analysis.
    Shiraishi N; Katayama A; Nakashima T; Yamada S; Uwabe C; Kose K; Takakuwa T
    Neuroimage; 2015 Jul; 115():96-103. PubMed ID: 25934469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerebro-oculo-nasal syndrome, a disorder with some manifestations suggestive of the holoprosencephalic spectrum: new case and imaging review of previous cases.
    Richieri-Costa A; Ribeiro LA
    Am J Med Genet A; 2005 Aug; 136A(4):352-3. PubMed ID: 15942945
    [No Abstract]   [Full Text] [Related]  

  • 52. Significant features in the early prenatal development of the human brain.
    O'Rahilly R; Müller F
    Ann Anat; 2008; 190(2):105-18. PubMed ID: 18356030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Branchio-oculo-facial syndrome with cleft lip and bilateral dermal thymus.
    Bennaceur S; Buisson T; Bertolus C; Couly G
    Cleft Palate Craniofac J; 1998 Sep; 35(5):454-9. PubMed ID: 9761567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Palate structure in human holoprosencephaly correlates with the facial malformation and demonstrates a new palatal developmental field.
    Kjaer I; Keeling J; Russell B; Daugaard-Jensen J; Fischer Hansen B
    Am J Med Genet; 1997 Dec; 73(4):387-92. PubMed ID: 9415463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS.
    Hynes M; Rosenthal A
    Curr Opin Neurobiol; 1999 Feb; 9(1):26-36. PubMed ID: 10072377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rhombomere-specific patterns of apoptosis in the tree shrew Tupaia belangeri.
    Knabe W; Washausen S; Brunnett G; Kuhn HJ
    Cell Tissue Res; 2004 Apr; 316(1):1-13. PubMed ID: 14986099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of hyperthermia effects on CNS development: rostral gene expression domains remain, despite severe head truncation; and the hindbrain/otocyst relationship is altered.
    Buckiová D; Brown NA
    Teratology; 1999 Mar; 59(3):139-47. PubMed ID: 10194804
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects.
    McNulty CL; Peres JN; Bardine N; van den Akker WM; Durston AJ
    Development; 2005 Jun; 132(12):2861-71. PubMed ID: 15930115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of a Zebrafish semaphorin reveals potential functions in vivo.
    Halloran MC; Severance SM; Yee CS; Gemza DL; Raper JA; Kuwada JY
    Dev Dyn; 1999 Jan; 214(1):13-25. PubMed ID: 9915572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain development--normal and abnormal.
    Volpe JJ
    J Perinat Med; 1991; 19 Suppl 1():29-34. PubMed ID: 1779374
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.