These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8281301)

  • 1. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields.
    Thomas H; Tillein J; Heil P; Scheich H
    Eur J Neurosci; 1993 Jul; 5(7):882-97. PubMed ID: 8281300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections.
    Budinger E; Heil P; Scheich H
    Eur J Neurosci; 2000 Jul; 12(7):2425-51. PubMed ID: 10947821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of inter- and intrahemispheric cortico-cortical connections in gerbil auditory cortex.
    Thomas H; López V
    Biol Res; 2003; 36(2):155-69. PubMed ID: 14513711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies.
    Scheich H; Zuschratter W
    Behav Brain Res; 1995 Jan; 66(1-2):195-205. PubMed ID: 7755890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization of the auditory cortex in a native Chilean rodent (Octodon degus).
    Thomas H; Tillein J
    Biol Res; 1997; 30(4):137-48. PubMed ID: 9711324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata.
    Esser KH; Eiermann A
    Eur J Neurosci; 1999 Oct; 11(10):3669-82. PubMed ID: 10564374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus).
    Zuschratter W; Gass P; Herdegen T; Scheich H
    Eur J Neurosci; 1995 Jul; 7(7):1614-26. PubMed ID: 7551188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures.
    Budinger E; Heil P; Scheich H
    Eur J Neurosci; 2000 Jul; 12(7):2452-74. PubMed ID: 10947822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional subdivisions in the auditory cortex of the guinea pig.
    Redies H; Sieben U; Creutzfeldt OD
    J Comp Neurol; 1989 Apr; 282(4):473-88. PubMed ID: 2723148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional organization of mustached bat inferior colliculus: I. Representation of FM frequency bands important for target ranging revealed by 14C-2-deoxyglucose autoradiography and single unit mapping.
    O'Neill WE; Frisina RD; Gooler DM
    J Comp Neurol; 1989 Jun; 284(1):60-84. PubMed ID: 2754031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic functional organization of second auditory cortical field (AII) of the cat.
    Schreiner CE; Cynader MS
    J Neurophysiol; 1984 Jun; 51(6):1284-305. PubMed ID: 6737031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): binaural 2-deoxyglucose patterns.
    Caird D; Scheich H; Klinke R
    J Comp Physiol A; 1991 Jan; 168(1):13-26. PubMed ID: 2033565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography.
    Ohl FW; Schulze H; Scheich H; Freeman WJ
    J Physiol Paris; 2000; 94(5-6):549-54. PubMed ID: 11165919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the 'isofrequency' dimension.
    Heil P; Rajan R; Irvine DR
    Hear Res; 1992 Nov; 63(1-2):135-56. PubMed ID: 1464567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early unilateral auditory deprivation increases 2-deoxyglucose uptake in contralateral auditory cortex of juvenile Mongolian gerbils.
    Stuermer IW; Scheich H
    Hear Res; 2000 Aug; 146(1-2):185-99. PubMed ID: 10913894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of responses in the anterior and primary auditory fields of the ferret cortex.
    Kowalski N; Versnel H; Shamma SA
    J Neurophysiol; 1995 Apr; 73(4):1513-23. PubMed ID: 7643163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central auditory pathway of the gerbil Psammomys obesus: a deoxyglucose study.
    Melzer P
    Hear Res; 1984 Aug; 15(2):187-95. PubMed ID: 6490545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data.
    Heil P; Scheich H
    Exp Brain Res; 1985; 58(3):532-43. PubMed ID: 4007092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals.
    Harel N; Mori N; Sawada S; Mount RJ; Harrison RV
    Neuroimage; 2000 Apr; 11(4):302-12. PubMed ID: 10725186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.