These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8281301)

  • 21. Optical and FDG mapping of frequency-specific activity in auditory cortex.
    Hess A; Scheich H
    Neuroreport; 1996 Nov; 7(15-17):2643-7. PubMed ID: 8981439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons.
    Radtke-Schuller S; Schuller G
    Eur J Neurosci; 1995 Apr; 7(4):570-91. PubMed ID: 7620609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys.
    Morel A; Garraghty PE; Kaas JH
    J Comp Neurol; 1993 Sep; 335(3):437-59. PubMed ID: 7693772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field.
    Doron NN; Ledoux JE; Semple MN
    J Comp Neurol; 2002 Nov; 453(4):345-60. PubMed ID: 12389207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick.
    Heil P; Scheich H
    J Comp Neurol; 1992 Aug; 322(4):548-65. PubMed ID: 1401249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    J Comp Neurol; 1982 Jun; 207(4):369-80. PubMed ID: 7119149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI.
    Budinger E; Laszcz A; Lison H; Scheich H; Ohl FW
    Brain Res; 2008 Jul; 1220():2-32. PubMed ID: 17964556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections.
    Rouiller EM; Rodrigues-Dagaeff C; Simm G; De Ribaupierre Y; Villa A; De Ribaupierre F
    Hear Res; 1989 May; 39(1-2):127-42. PubMed ID: 2737960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis.
    Cahill L; Ohl F; Scheich H
    Neurobiol Learn Mem; 1996 May; 65(3):213-22. PubMed ID: 8616585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil.
    Schulze H; Hess A; Ohl FW; Scheich H
    Eur J Neurosci; 2002 Mar; 15(6):1077-84. PubMed ID: 11918666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tonotopic organization in auditory cortex of the cat.
    Reale RA; Imig TJ
    J Comp Neurol; 1980 Jul; 192(2):265-91. PubMed ID: 7400399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modular functional organization of cat anterior auditory field.
    Imaizumi K; Priebe NJ; Crum PA; Bedenbaugh PH; Cheung SW; Schreiner CE
    J Neurophysiol; 2004 Jul; 92(1):444-57. PubMed ID: 15014102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The subcortical auditory structures in the Mongolian gerbil: II. Frequency-related topography of the connections with cortical field AI.
    Budinger E; Brosch M; Scheich H; Mylius J
    J Comp Neurol; 2013 Aug; 521(12):2772-97. PubMed ID: 23408290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
    Eggermont JJ
    J Neurophysiol; 1998 Nov; 80(5):2743-64. PubMed ID: 9819278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional maps of human auditory cortex: effects of acoustic features and attention.
    Woods DL; Stecker GC; Rinne T; Herron TJ; Cate AD; Yund EW; Liao I; Kang X
    PLoS One; 2009; 4(4):e5183. PubMed ID: 19365552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tonotopic mapping in auditory cortex of the chinchilla.
    Harrison RV; Kakigi A; Hirakawa H; Harel N; Mount RJ
    Hear Res; 1996 Oct; 100(1-2):157-63. PubMed ID: 8922990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
    Linden JF; Liu RC; Sahani M; Schreiner CE; Merzenich MM
    J Neurophysiol; 2003 Oct; 90(4):2660-75. PubMed ID: 12815016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional organization of ferret auditory cortex.
    Bizley JK; Nodal FR; Nelken I; King AJ
    Cereb Cortex; 2005 Oct; 15(10):1637-53. PubMed ID: 15703254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat.
    Servière J; Webster WR; Calford MB
    J Comp Neurol; 1984 Oct; 228(4):463-77. PubMed ID: 6490965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two columnar systems in the auditory neostriatum of the chick: evidence from 2-deoxyglucose.
    Scheich H
    Exp Brain Res; 1983; 51(2):199-205. PubMed ID: 6194006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.