BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 8282048)

  • 21. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components.
    Form DM; Pratt BM; Madri JA
    Lab Invest; 1986 Nov; 55(5):521-30. PubMed ID: 2430138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor Necrosis Factor-α and IL-17A Activation Induces Pericyte-Mediated Basement Membrane Remodeling in Human Neutrophilic Dermatoses.
    Lauridsen HM; Pellowe AS; Ramanathan A; Liu R; Miller-Jensen K; McNiff JM; Pober JS; Gonzalez AL
    Am J Pathol; 2017 Aug; 187(8):1893-1906. PubMed ID: 28609645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes.
    Liu B; Bhat M; Padival AK; Smith DG; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1983-95. PubMed ID: 15161867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential TGF-{beta} signaling in retinal vascular cells: a role in diabetic retinopathy?
    Van Geest RJ; Klaassen I; Vogels IM; Van Noorden CJ; Schlingemann RO
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):1857-65. PubMed ID: 19959647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells.
    Sato S; Secchi EF; Lizak MJ; Fukase S; Ohta N; Murata M; Tsai JY; Kador PF
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):697-704. PubMed ID: 10067973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability.
    Oshitari T; Polewski P; Chadda M; Li AF; Sato T; Roy S
    Diabetes; 2006 Jan; 55(1):86-92. PubMed ID: 16380480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrin overexpression induced by high glucose and by human diabetes: potential pathway to cell dysfunction in diabetic microangiopathy.
    Roth T; Podestá F; Stepp MA; Boeri D; Lorenzi M
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9640-4. PubMed ID: 8415754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced assembly of basement membrane matrix by endodermal cells in response to fibronectin substrata.
    Austria MR; Couchman JR
    J Cell Sci; 1991 Jun; 99 ( Pt 2)():443-51. PubMed ID: 1885680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural localization of extracellular matrix components in human retinal vessels and Bruch's membrane.
    Das A; Frank RN; Zhang NL; Turczyn TJ
    Arch Ophthalmol; 1990 Mar; 108(3):421-9. PubMed ID: 2310346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of basement membrane-specific macromolecules by cultured human microvascular endothelial cells isolated from skin of diabetic and nondiabetic subjects.
    Fuh GM; Bensch K; Karasek MA; Kramer RH
    Microvasc Res; 1986 Nov; 32(3):359-70. PubMed ID: 3540535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor.
    Wewer U; Albrechtsen R; Ruoslahti E
    Cancer Res; 1981 Apr; 41(4):1518-24. PubMed ID: 7011537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells.
    Sorokin L; Girg W; Göpfert T; Hallmann R; Deutzmann R
    Eur J Biochem; 1994 Jul; 223(2):603-10. PubMed ID: 8055931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration.
    Chibber R; Molinatti PA; Kohner EM
    Cell Mol Biol (Noisy-le-grand); 1999 Feb; 45(1):47-57. PubMed ID: 10099839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endothelial k-RasV12 Expression Induces Capillary Deficiency Attributable to Marked Tube Network Expansion Coupled to Reduced Pericytes and Basement Membranes.
    Sun Z; Kemp SS; Lin PK; Aguera KN; Davis GE
    Arterioscler Thromb Vasc Biol; 2022 Feb; 42(2):205-222. PubMed ID: 34879709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of extracellular matrix biosynthesis by bovine retinal pericytes in vitro: effects of the substratum and cell density.
    Canfield AE; Allen TD; Grant ME; Schor SL; Schor AM
    J Cell Sci; 1990 May; 96 ( Pt 1)():159-69. PubMed ID: 2373739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of bovine retinal pericytes and endothelial cells in high hexose concentrations.
    Porta M; Molinatti PA; Dosso AA; Williams FM; Brooks RA; Kohner EM
    Diabete Metab; 1994; 20(1):25-30. PubMed ID: 8056131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid.
    Fisher EJ; McLennan SV; Yue DK; Turtle JR
    Microvasc Res; 1994 Sep; 48(2):179-89. PubMed ID: 7854204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topographical specificity in isolated retinal capillary basement membranes: a high-resolution scanning electron microscope analysis.
    Carlson EC
    Microvasc Res; 1988 Mar; 35(2):221-35. PubMed ID: 3367794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats.
    Roy S; Sato T; Paryani G; Kao R
    Diabetes; 2003 May; 52(5):1229-34. PubMed ID: 12716757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pericyte differentiation.
    Schor AM; Canfield AE; Sutton AB; Arciniegas E; Allen TD
    Clin Orthop Relat Res; 1995 Apr; (313):81-91. PubMed ID: 7543836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.