These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8282715)

  • 21. The signal transducer P(II) and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation.
    Palinska KA; Laloui W; Bédu S; Loiseaux-de Goer S; Castets AM; Rippka R; Tandeau de Marsac N
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2405-2412. PubMed ID: 12177334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis.
    Burillo S; Luque I; Fuentes I; Contreras A
    J Bacteriol; 2004 Jun; 186(11):3346-54. PubMed ID: 15150219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal transduction protein P(II) is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942.
    Fadi Aldehni M; Sauer J; Spielhaupter C; Schmid R; Forchhammer K
    J Bacteriol; 2003 Apr; 185(8):2582-91. PubMed ID: 12670983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Synechococcus elongatus P signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase.
    Heinrich A; Maheswaran M; Ruppert U; Forchhammer K
    Mol Microbiol; 2004 Jun; 52(5):1303-14. PubMed ID: 15165234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA.
    Espinosa J; Forchhammer K; Burillo S; Contreras A
    Mol Microbiol; 2006 Jul; 61(2):457-69. PubMed ID: 16796668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942.
    Sakamoto T; Takatani N; Sonoike K; Jimbo H; Nishiyama Y; Omata T
    Plant Cell Physiol; 2021 Sep; 62(4):721-731. PubMed ID: 33650637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-type specific modification of PII is involved in the regulation of nitrogen metabolism in the cyanobacterium Anabaena PCC 7120.
    Laurent S; Forchhammer K; Gonzalez L; Heulin T; Zhang CC; Bédu S
    FEBS Lett; 2004 Oct; 576(1-2):261-5. PubMed ID: 15474048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria.
    Osanai T; Tanaka K
    Plant Cell Physiol; 2007 Jul; 48(7):908-14. PubMed ID: 17566056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002.
    Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD
    J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the effects of P(II) deficiency and the toxicity of PipX on growth characteristics of the P(II)-Less mutant of the cyanobacterium Synechococcus elongatus.
    Chang Y; Takatani N; Aichi M; Maeda S; Omata T
    Plant Cell Physiol; 2013 Sep; 54(9):1504-14. PubMed ID: 23811238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of nitrate reductase by non-modifiable derivatives of PII in the cells of Synechococcus elongatus strain PCC 7942.
    Takatani N; Kobayashi M; Maeda S; Omata T
    Plant Cell Physiol; 2006 Aug; 47(8):1182-6. PubMed ID: 16854940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Independence of carbon and nitrogen control in the posttranslational regulation of nitrate transport in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Rodríguez R; Kobayashi M; Omata T; Lara C
    FEBS Lett; 1998 Aug; 432(3):207-12. PubMed ID: 9720926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus.
    Tremblay PL; Drepper T; Masepohl B; Hallenbeck PC
    J Bacteriol; 2007 Aug; 189(16):5850-9. PubMed ID: 17586647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of glnA in the cyanobacterium Synechococcus sp. strain PCC 7942 is initiated from a single nif-like promoter under various nitrogen conditions.
    Cohen-Kupiec R; Gurevitz M; Zilberstein A
    J Bacteriol; 1993 Dec; 175(23):7727-31. PubMed ID: 7902350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins.
    Lapina T; Selim KA; Forchhammer K; Ermilova E
    Sci Rep; 2018 Jan; 8(1):790. PubMed ID: 29335634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation by cyanate of the genes involved in carbon and nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Suzuki I; Sugiyami T; Omata T
    J Bacteriol; 1996 May; 178(9):2688-94. PubMed ID: 8626339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis for the distinct divalent cation requirement in the uridylylation of the signal transduction proteins GlnJ and GlnB from Rhodospirillum rubrum.
    Teixeira PF; Dominguez-Martin MA; Nordlund S
    BMC Microbiol; 2012 Jul; 12():136. PubMed ID: 22769741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The novel P
    Orthwein T; Scholl J; Spät P; Lucius S; Koch M; Macek B; Hagemann M; Forchhammer K
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942.
    Harano Y; Suzuki I; Maeda S; Kaneko T; Tabata S; Omata T
    J Bacteriol; 1997 Sep; 179(18):5744-50. PubMed ID: 9294430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the light-independent phosphoserine pathway as an additional source of serine in the cyanobacterium Synechocystis sp. PCC 6803.
    Klemke F; Baier A; Knoop H; Kern R; Jablonsky J; Beyer G; Volkmer T; Steuer R; Lockau W; Hagemann M
    Microbiology (Reading); 2015 May; 161(Pt 5):1050-1060. PubMed ID: 25701735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.