BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8282979)

  • 1. Reach to grasp: changes with age.
    Bennett KM; Castiello U
    J Gerontol; 1994 Jan; 49(1):P1-7. PubMed ID: 8282979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reach to grasp: the natural response to perturbation of object size.
    Castiello U; Bennett KM; Stelmach GE
    Exp Brain Res; 1993; 94(1):163-78. PubMed ID: 8335072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reach to grasp movement of blind subjects.
    Castiello U; Bennett KM; Mucignat C
    Exp Brain Res; 1993; 96(1):152-62. PubMed ID: 8243577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bilateral reach to grasp movement.
    Castiello U; Bennett KM; Stelmach GE
    Behav Brain Res; 1993 Jul; 56(1):43-57. PubMed ID: 8397855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects.
    Gentilucci M; Toni I; Chieffi S; Pavesi G
    Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkinson's disease: reorganization of the reach to grasp movement in response to perturbation of the distal motor patterning.
    Castiello U; Bennett KM
    Neuropsychologia; 1994 Nov; 32(11):1367-82. PubMed ID: 7877745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tactile input of the hand and the control of reaching to grasp movements.
    Gentilucci M; Toni I; Daprati E; Gangitano M
    Exp Brain Res; 1997 Mar; 114(1):130-7. PubMed ID: 9125458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal control of the reach and grip components during a prehension task in humans.
    Timmann D; Stelmach GE; Bloedel JR
    Neurosci Lett; 1996 Mar; 207(2):133-6. PubMed ID: 8731439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting higher-order movement planning: a kinematic analysis of human prehension.
    Jakobson LS; Goodale MA
    Exp Brain Res; 1991; 86(1):199-208. PubMed ID: 1756790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of pincer grasp and transport after mechanical perturbation of the index finger.
    Schettino LF; Adamovich SV; Tunik E
    J Neurophysiol; 2017 Jun; 117(6):2292-2297. PubMed ID: 28331008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficits in the evolution of hand preshaping in Parkinson's disease.
    Schettino LF; Rajaraman V; Jack D; Adamovich SV; Sage J; Poizner H
    Neuropsychologia; 2004; 42(1):82-94. PubMed ID: 14615078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prehension with the ipsilesional hand after unilateral brain damage.
    Hermsdörfer J; Ulrich S; Marquardt C; Goldenberg G; Mai N
    Cortex; 1999 Apr; 35(2):139-61. PubMed ID: 10369090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grip reorganization during wrist transport: the influence of an altered aperture.
    Saling M; Mescheriakov S; Molokanova E; Stelmach GE; Berger M
    Exp Brain Res; 1996 Mar; 108(3):493-500. PubMed ID: 8801129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of prehension components following perturbation of object size.
    Bennett KM; Castiello U
    Psychol Aging; 1995 Jun; 10(2):204-14. PubMed ID: 7662180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position.
    Paulignan Y; MacKenzie C; Marteniuk R; Jeannerod M
    Exp Brain Res; 1991; 83(3):502-12. PubMed ID: 2026193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.