These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 828298)

  • 1. In vitro studies of antimicrobial effects of biological dressings. A comparison of the effect of human cadaver split skin grafts; irradiated and deep frozen porcine split skin; and fresh split skin from living humans and pigs.
    Brandberg A; Lindblom GB; Bartholdson L; Elgefors B
    Scand J Plast Reconstr Surg; 1976; 10(2):91-5. PubMed ID: 828298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAP-containing dressings exhibit sustained antimicrobial effects over 7 days in vitro.
    Wiegand C; Abel M; Muldoon J; Ruth P; Hipler UC
    J Wound Care; 2013 Mar; 22(3):120, 122-4, 126-7. PubMed ID: 23665730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro antimicrobial effects of fresh split skin, homologous-cultured epithelium and porcine split skin grafts for wound coverage.
    Franchelli S; Muggianu M; Dalla Costa R; Rainero ML; Campora E; Santi PL
    Burns; 1992 Jun; 18(3):237-40. PubMed ID: 1642773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardizing an in vitro procedure for the evaluation of the antimicrobial activity of wound dressings and the assessment of three wound dressings.
    Tkachenko O; Karas JA
    J Antimicrob Chemother; 2012 Jul; 67(7):1697-700. PubMed ID: 22514261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial effect of biological dressings in the treatment of infected wounds.
    Bartholdson L; Brandberg A; Elgefors B
    Scand J Plast Reconstr Surg; 1977; 11(1):33-7. PubMed ID: 333560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis.
    Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK
    Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A note on an in vitro test system to compare the bactericidal properties of wound dressings.
    Holland KT; Davis W
    J Appl Bacteriol; 1985 Jul; 59(1):61-3. PubMed ID: 3928570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrofiber Dressing Saturated With Mafenide Acetate Extends the Duration of Antimicrobial Activity.
    Kahn SA; Afshari A; Nguyen L; Shinha T; Huff T; Montgomery AC; Stratton C; Summitt B
    J Burn Care Res; 2017; 38(4):e704-e707. PubMed ID: 27775984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occlusive dressings. Does dressing type influence the growth of common bacterial pathogens?
    Marshall DA; Mertz PM; Eaglstein WH
    Arch Surg; 1990 Sep; 125(9):1136-9. PubMed ID: 2119166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a bi-layer wound dressing for burn care. II. In vitro and in vivo bactericidal properties.
    Martineau L; Shek PN
    Burns; 2006 Mar; 32(2):172-9. PubMed ID: 16455202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of flow cytometry to compare the antimicrobial efficacy of silver-containing wound dressings against planktonic Staphylococcus aureus and Pseudomonas aeruginosa.
    Percival SL; Slone W; Linton S; Okel T; Corum L; Thomas JG
    Wound Repair Regen; 2011; 19(3):436-41. PubMed ID: 21518089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo characteristics of frozen/thawed neonatal pig split-skin strips: a novel biologically active dressing for areas of severe, acute or chronic skin loss.
    Chiarini A; Dal Pra I; Armato U
    Int J Mol Med; 2007 Feb; 19(2):245-55. PubMed ID: 17203198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial contamination of skin used as a biological dressing. A potential hazard.
    Monafo WW; Tandon SN; Bradley RE; Condict C
    JAMA; 1976 Mar; 235(12):1248-9. PubMed ID: 765519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human skin--antibacterial in vitro?
    Rubin LR; Bongiovi J
    J Surg Res; 1971 Jul; 11(7):321-4. PubMed ID: 5003512
    [No Abstract]   [Full Text] [Related]  

  • 15. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial.
    Martineau L; Davis SC; Peng HT; Hung A
    J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state.
    De Luca M; Albanese E; Bondanza S; Megna M; Ugozzoli L; Molina F; Cancedda R; Santi PL; Bormioli M; Stella M
    Burns; 1989 Oct; 15(5):303-9. PubMed ID: 2686683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microengineered surface topography facilitates cell grafting from a prototype hydrogel wound dressing with antibacterial capability.
    Smith AG; Din A; Denyer M; Crowther NJ; Eagland D; Vowden K; Vowden P; Britland ST
    Biotechnol Prog; 2006; 22(5):1407-15. PubMed ID: 17022681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial clearance capability of living skin equivalent, living dermal equivalent, saline dressing, and xenograft dressing in the rabbit.
    Fiala TG; Lee WP; Hong HZ; May JW
    Ann Plast Surg; 1993 Jun; 30(6):516-9. PubMed ID: 8368778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of negative pressure wound therapy with antibacterial dressings or antiseptics on an in vitro wound model.
    Matiasek J; Domig KJ; Djedovic G; Babeluk R; Assadian O
    J Wound Care; 2017 May; 26(5):236-242. PubMed ID: 28475440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of antimicrobial activity of selected, commercially available wound dressing materials.
    Szweda P; Gorczyca G; Tylingo R
    J Wound Care; 2018 May; 27(5):320-326. PubMed ID: 29738292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.